Function and mechanism of tumor suppressor gene LRRC4/NGL-2

Molecular Cancer - Tập 13 - Trang 1-7 - 2014
Peiyao Li1,2,3,4, Gang Xu1,2,3,4,5, Guiyuan Li1,2,3,4, Minghua Wu1,2,3,4
1Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School Central South University, Changsha, China
2Cancer Research Institute, Central South University, Changsha, P.R. China
3Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
4Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China
5Medical College, University of South China, Hengyang, China

Tóm tắt

LRRC4/NGL-2 (Leucine rich repeat containing 4/Netrin-G ligand-2), a relatively specific expressed gene in brain tissue, is a member of the LRRC4/ NGL (netrin-G ligand) family and belongs to the superfamily of LRR proteins. LRRC4/NGL-2 regulates neurite outgrowth and lamina-specific dendritic segmentation, suggesting that LRRC4/NGL-2 is important for the development of the nervous system. In addition, LRRC4/NGL-2 has been identified as a tumor suppressor gene. The overexpression of LRRC4/NGL-2 suppresses glioma cell growth, angiogenesis and invasion through complicated signaling regulation networks. LRRC4/NGL-2 also has the ability to form multiphase loops with miRNA, transcription factors and gene methylation modification; the loss of LRRC4/NGL-2 function may be an important event in multiple biological processes in gliomas. In summary, LRRC4/NGL-2 is a critical gene in the normal development and tumorigenesis of the nervous system.

Tài liệu tham khảo

Kobe B, Deisenhofer J: The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci. 1994, 19: 415-421. 10.1016/0968-0004(94)90090-6 Kobe B, Kajava AV: The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. 2001, 11: 725-732. 10.1016/S0959-440X(01)00266-4 Dolan J, Walshe K, Alsbury S, Hokamp K, O'Keeffe S, Okafuji T, Miller SF, Tear G, Mitchell KJ: The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genomics. 2007, 8: 320- 10.1186/1471-2164-8-320 Taguchi A, Wanaka A, Mori T, Matsumoto K, Imai Y, Tagaki T, Tohyama M: Molecular cloning of novel leucine-rich repeat proteins and their expression in the developing mouse nervous system. Brain Res Mol Brain Res. 1996, 35: 31-40. 10.1016/0169-328X(95)00178-U de Wit J, Ghosh A: Control of neural circuit formation by leucine-rich repeat proteins. Trends Neurosci. 2014, 37: 539-550. 10.1016/j.tins.2014.07.004 Bando T, Morikawa Y, Hisaoka T, Komori T, Miyajima A, Senba E:Dynamic expression pattern of leucine-rich repeat neuronal protein 4 in the mouse dorsal root ganglia during development. Neurosci Lett. 2013, 548: 73-78. Wang J, Qian J, Dong L, Li X, Tan C, Li J, Zhang B: Identification of LRRC4, a Novel Member of Leucine-rich Repeat (LRR) Superfam ily, and Its Expression Analysis in Brain Tumor. Prog Biochem Biophys. 2002, 29: 233-239. Lin JC, Ho WH, Gurney A, Rosenthal A: The netrin-G1 ligand NGL-1 promotes the outgrowth of thalamocortical axons. Nat Neurosci. 2003, 6: 1270-1276. 10.1038/nn1148 Kim S, Burette A, Chung HS, Kwon SK, Woo J, Lee HW, Kim K, Kim H, Weinberg RJ, Kim E: NGL family PSD-95-interacting adhesion molecules regulate excitatory synapse formation. Nat Neurosci. 2006, 9: 1294-1301. 10.1038/nn1763 Woo J, Kwon SK, Kim E: The NGL family of leucine-rich repeat-containing synaptic adhesion molecules. Mol Cell Neurosci. 2009, 42: 1-10. 10.1016/j.mcn.2009.05.008 Gu W, Brodtkorb E, Steinlein OK: LGI1 is mutated in familial temporal lobe epilepsy characterized by aphasic seizures. Ann Neurol. 2002, 52: 364-367. 10.1002/ana.10280 Ko J, Kim E: Leucine-rich repeat proteins of synapses. J Neurosci Res. 2007, 85: 2824-2832. 10.1002/jnr.21306 Zhang Q, Wang J, Fan S, Wang L, Cao L, Tang K, Peng C, Li Z, Li W, Gan K, Liu Z, Li X, Shen S, Li G: Expression and functional characterization of LRRC4, a novel brain-specific member of the LRR superfamily. FEBS Lett. 2005, 579: 3674-3682. 10.1016/j.febslet.2005.05.058 Dan L, Ming-hua W, Qiong C, He H, Chen H, Wei-song L, Xiao-ling L, Gui-yuan L: Preparation of anti-LRRC4 polyclonal antibody and its application in constructing expression profile of human gliomas with different pathological grades. J Cent S Univ (Med Sci). 2007, 32: 373-379. Nishimura-Akiyoshi S, Niimi K, Nakashiba T, Itohara S: Axonal netrin-Gs transneuronally determine lamina-specific subdendritic segments. Proc Natl Acad Sci U S A. 2007, 104: 14801-14806. 10.1073/pnas.0706919104 Carim-Todd L, Escarceller M, Estivill X, Sumoy L: LRRN6A/LERN1 (leucine-rich repeat neuronal protein 1), a novel gene with enriched expression in limbic system and neocortex. Eur J Neurosci. 2003, 18: 3167-3182. 10.1111/j.1460-9568.2003.03003.x Kuja-Panula J, Kiiltomaki M, Yamashiro T, Rouhiainen A, Rauvala H: AMIGO, a transmembrane protein implicated in axon tract development, defines a novel protein family with leucine-rich repeats. J Cell Biol. 2003, 160: 963-973. 10.1083/jcb.200209074 Kwon SK, Woo J, Kim SY, Kim H, Kim E: Trans-synaptic adhesions between netrin-G ligand-3 (NGL-3) and receptor tyrosine phosphatases LAR, protein-tyrosine phosphatase delta (PTPdelta), and PTPsigma via specific domains regulate excitatory synapse formation. J Biol Chem. 2010, 285: 13966-13978. 10.1074/jbc.M109.061127 Biederer T: Hooking up new synapses. Nat Neurosci. 2006, 9: 1203-1204. 10.1038/nn1006-1203 Wu M, Huang H, Chen Q, Li D, Zheng Z, Xiong W, Zhou Y, Li X, Zhou M, Lu J, Shen S, Li G: Leucine-rich repeat C4 protein is involved in nervous tissue development and neurite outgrowth, and induction of glioma cell differentiation. Acta Biochim Biophys Sin (Shanghai). 2007, 39: 731-738. 10.1111/j.1745-7270.2007.00338.x DeNardo LA, de Wit J, Otto-Hitt S, Ghosh A: NGL-2 regulates input-specific synapse development in CA1 pyramidal neurons. Neuron. 2012, 76: 762-775. 10.1016/j.neuron.2012.10.013 Soto F, Watkins KL, Johnson RE, Schottler F, Kerschensteiner D: NGL-2 regulates pathway-specific neurite growth and lamination, synapse formation, and signal transmission in the retina. J Neurosci. 2013, 33: 11949-11959. 10.1523/JNEUROSCI.1521-13.2013 Woo J, Kwon SK, Choi S, Kim S, Lee JR, Dunah AW, Sheng M, Kim E: Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat Neurosci. 2009, 12: 428-437. 10.1038/nn.2279 Wu M, Huang C, Gan K, Huang H, Chen Q, Ouyang J, Tang Y, Li X, Yang Y, Zhou H, Zhou Y, Zeng Z, Xiao L, Li D, Tang K, Shen S, Li G: LRRC4, a putative tumor suppressor gene, requires a functional leucine-rich repeat cassette domain to inhibit proliferation of glioma cells in vitro by modulating the extracellular signal-regulated kinase/protein kinase B/nuclear factor-kappaB pathway. Mol Biol Cell. 2006, 17: 3534-3542. 10.1091/mbc.E05-11-1082 Xiao L, Tu C, Chen S, Yu Z, Lei Q, Wang Z, Xu G, Wu M, Li G: LRRC4 haplotypes are associated with pituitary adenoma in a Chinese population. Med Oncol. 2014, 31: 888- Zhang QH, Wang LL, Cao L, Peng C, Li XL, Tang K, Li WF, Liao P, Wang JR, Li GY: Study of a novel brain relatively specific gene LRRC4 involved in glioma tumorigenesis suppression using the Tet-on system. Acta Biochim Biophys Sin (Shanghai). 2005, 37: 532-540. 10.1111/j.1745-7270.2005.00079.x Zhang QH, Wu MH, Wang LL, Cao L, Tang K, Peng C, Gan K, Li XL, Li GY: Profiling of differentially expressed genes in LRRC4 overexpressed glioblastoma cells by cDNA array. Acta Biochim Biophys Sin (Shanghai). 2005, 37: 680-687. 10.1111/j.1745-7270.2005.00100.x Wu M, Gan K, Huang C, Tang Y, Chen Q, Tang K, Li X, Shen S, Li G: LRRC4 controls in vitro invasion of glioblastoma cells through inhibiting RPTP-zeta expression. J Neurooncol. 2006, 80: 133-142. 10.1007/s11060-006-9173-6 Wu M, Chen Q, Li D, Li X, Li X, Huang C, Tang Y, Zhou Y, Wang D, Tang K, Cao L, Shen S, Li G: LRRC4 inhibits human glioblastoma cells proliferation, invasion, and proMMP-2 activation by reducing SDF-1 alpha/CXCR4-mediated ERK1/2 and Akt signaling pathways. J Cell Biochem. 2008, 103: 245-255. 10.1002/jcb.21400 Wu M, Huang C, Li X, Li X, Gan K, Chen Q, Tang Y, Tang K, Shen S, Li G: LRRC4 inhibits glioblastoma cell proliferation, migration, and angiogenesis by downregulating pleiotropic cytokine expression and responses. J Cell Physiol. 2008, 214: 65-74. 10.1002/jcp.21163 Zhang Z, Li D, Wu M, Xiang B, Wang L, Zhou M, Chen P, Li X, Shen S, Li G: Promoter hypermethylation-mediated inactivation of LRRC4 in gliomas. BMC Mol Biol. 2008, 9: 99- 10.1186/1471-2199-9-99 Minghua W, Zuping Z, Xiaoping L, Hailin T: Methylation Level of Genes and MiRNA-Mediated Methylation Modification Mechanism In Glioma. Protein Purification and Analysis III - Methods and Applications. 2014, Hong Kong: iConcept Press, 1, Mathupala SP, Mittal S, Guthikonda M, Sloan AE: MicroRNA and brain tumors: a cause and a cure?. DNA Cell Biol. 2007, 26: 301-310. 10.1089/dna.2006.0560 Zhang L, Liu T, Huang Y, Liu J: microRNA-182 inhibits the proliferation and invasion of human lung adenocarcinoma cells through its effect on human cortical actin-associated protein. Int J Mol Med. 2011, 28: 381-388. Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136: 215-233. 10.1016/j.cell.2009.01.002 Kusenda B, Mraz M, Mayer J, Pospisilova S: MicroRNA biogenesis, functionality and cancer relevance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006, 150: 205-215. 10.5507/bp.2006.029 Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, You Y: hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res. 2008, 1236: 185-193. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5 Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RH, Mourelatos Z: RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA. 2006, 12: 187-191. Chan JA, Krichevsky AM, Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65: 6029-6033. 10.1158/0008-5472.CAN-05-0137 Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG: Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005, 334: 1351-1358. 10.1016/j.bbrc.2005.07.030 Mathupala SP, Guthikonda M, Sloan AE: RNAi based approaches to the treatment of malignant glioma. Technol Cancer Res Treat. 2006, 5: 261-269. Tang H, Wang Z, Liu Q, Liu X, Wu M, Li G: Disturbing miR-182 and −381 inhibits BRD7 transcription and glioma growth by directly targeting LRRC4. PLoS One. 2014, 9: e84146- 10.1371/journal.pone.0084146 Tang H, Wang Z, Liu X, Liu Q, Xu G, Li G, Wu M: LRRC4 inhibits glioma cell growth and invasion through a miR-185-dependent pathway. Curr Cancer Drug Targets. 2012, 12: 1032-1042. 10.2174/156800912803251180 Tang H, Liu X, Wang Z, She X, Zeng X, Deng M, Liao Q, Guo X, Wang R, Li X, Zeng F, Wu M, Li G: Interaction of hsa-miR-381 and glioma suppressor LRRC4 is involved in glioma growth. Brain Res. 2011, 1390: 21-32. Minghua W: Methylomes in Epigenetics and Epigenomics. 2014, Rijeka: InTech, Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE: Chromatin structure analyses identify miRNA promoters. Genes Dev. 2008, 22: 3172-3183. 10.1101/gad.1706508 Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010, 12: 247-256. Schulte JH, Horn S, Otto T, Samans B, Heukamp LC, Eilers UC, Krause M, Astrahantseff K, Klein-Hitpass L, Buettner R, Schramm A, Christiansen H, Eilers M, Eggert A, Berwanger B: MYCN regulates oncogenic MicroRNAs in neuroblastoma. Int J Cancer. 2008, 122: 699-704. 10.1002/ijc.23153 Gehrke S, Imai Y, Sokol N, Lu B: Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature. 2010, 466: 637-641. 10.1038/nature09191 Brock M, Trenkmann M, Gay RE, Michel BA, Gay S, Fischler M, Ulrich S, Speich R, Huber LC: Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circ Res. 2009, 104: 1184-1191. 10.1161/CIRCRESAHA.109.197491 Rosa A, Brivanlou AH: A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. EMBO J. 2011, 30: 237-248. 10.1038/emboj.2010.319 Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, Wellner U, Dimmler A, Faller G, Schubert J, Brabletz T: The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 2011, 30: 770-782. 10.1038/emboj.2010.349 Liu S, Wu LC, Pang J, Santhanam R, Schwind S, Wu YZ, Hickey CJ, Yu J, Becker H, Maharry K, Radmacher MD, Li C, Whitman SP, Mishra A, Stauffer N, Eiring AM, Briesewitz R, Baiocchi RA, Chan KK, Paschka P, Caligiuri MA, Byrd JC, Croce CM, Bloomfield CD, Perrotti D, Garzon R, Marcucci G: Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell. 2010, 17: 333-347. 10.1016/j.ccr.2010.03.008 Das S, Foley N, Bryan K, Watters KM, Bray I, Murphy DM, Buckley PG, Stallings RL: MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res. 2010, 70: 7874-7881. 10.1158/0008-5472.CAN-10-1534 Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N: MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol. 2010, 184: 6773-6781. 10.4049/jimmunol.0904060 Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, Schwind S, Pang J, Yu J, Muthusamy N, Havelange V, Volinia S, Blum W, Rush LJ, Perrotti D, Andreeff M, Bloomfield CD, Byrd JC, Chan K, Wu LC, Croce CM, Marcucci G: MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 2009, 113: 6411-6418. 10.1182/blood-2008-07-170589 Liang R, Bates DJ, Wang E: Epigenetic Control of MicroRNA Expression and Aging. Curr Genomics. 2009, 10: 184-193. 10.2174/138920209788185225 Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim YH, Tsuchiya KD, Washington MK, Paraskeva C, Willson JK, Kaz AM, Kroh EM, Allen A, Fritz BR, Markowitz SD, Tewari M: Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene. 2008, 27: 3880-3888. 10.1038/onc.2008.10 Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ, Gallagher WM, Eccles SA, Croce CM, Esteller M: A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A. 2008, 105: 13556-13561. 10.1073/pnas.0803055105