Function Emulation Using Radial Basis Function Networks
Tài liệu tham khảo
Broomhead, 1988, Multivariable functional interpolation and adaptive networks, Complex Systems, 2, 321
Chakravarthy, 1996, Scale-based clustering using the Radial Basis Function network, IEEE Transactions on Neural Networks, 7, 1250, 10.1109/72.536318
Friedman, J. (1994). An overview of predictive learning and function approximation. In V. Cherkassky, J.F. and H. Wechsler (Eds.), From statistics to neural networks, Proceedings of the NATO/ASI Workshop (pp. 1–61). Berlin: Springer Verlag.
Gilmore, R. (1981). Catastrophe theory for scientists and engineers. New York: Wiley-Interscience.
Golub, G., & Van Loan, C. (1989). Matrix computations. Baltimore, MD: Johns Hopkins University Press.
Hoskins, J.C., Lee, P., & Chakravarthy, S.V. (1993). Polynomial modeling behavior in radial basis function networks. In Proceedings of the World Conference on Neural Networks, Portland, OR (pp. 693–699). Hillsdale, NJ: Laurence Earlbaum.
Kadirkamanathan, V., Niranjan, M., & Fallside, F. (1991). Sequential adaptation of radial basis function neural networks. In J.E. Moody, R. and D.S. Touretzky (Eds.), Advances in neural information processing systems 3 (pp. 721–727). San Mateo, CA: Morgan Kaufmann.
Lieblich, 1982, Multiple representations of space underlying behavior, Behavioral Brain Sciences, 5, 627, 10.1017/S0140525X00013959
Lu, Y. (1976). Singularity theory and an introduction to catastrophe theory. New York: Springer-Verlag.
Mather, 1968, Stability of C∞ mappings III finitely determined map germs, Publ. Math. IHES, 35, 127, 10.1007/BF02698926
Mather, 1969, Stability of C∞ mappings IV classification of stable germs by r-algebras, Publ. Math. IHES, 37, 223, 10.1007/BF02684889
Moody, 1989, Fast learning in networks of locally-tuned processing units, Neural Computation, 1, 281, 10.1162/neco.1989.1.2.281
Poggio, 1990, Networks for approximation and learning, Proc. IEEE, 78, 1481, 10.1109/5.58326
Poston, T., & Stewart, I.N. (1978). Catastrophe theory and its applications. London: Pittman.
Pratt, L., & Thrun, S. (1997). Guest Editors, Special issue on inductive transfer. Machine Learning.
Thom, R. (1975). Structural stability and morphogenesis. Reading: Benjamin.
Wahba, G. (1990). Spline models for observational data. Philadelphia, PA: Society for Industrial and Applied Mathematics.