Xông khói bằng hợp chất bay hơi vi khuẩn 2, 5-dimethylpyrazine tăng cường sức chống chịu với bệnh thán thư và tuổi thọ của quả xoài

Springer Science and Business Media LLC - Tập 164 - Trang 209-227 - 2022
Archana T. Janamatti1, Aundy Kumar2, Charanjit Kaur1, Robin Gogoi2, Eldho Varghese3, Sudhir Kumar4
1Division of Food Science and Postharvest Technology, New Delhi, India
2Division of Plant Pathology, New Delhi, India
3Fishery Resources Assessment Division, Kochi, India
4Division of Plant Physiology, New Delhi, India

Tóm tắt

Bệnh thán thư là một bệnh nghiêm trọng sau thu hoạch của quả xoài, gây ra tổn thất đáng kể về chất lượng trong quá trình chín, lưu trữ và thương mại. Trong nghiên cứu này, chúng tôi đã đánh giá tác dụng phòng ngừa và chữa bệnh của các hợp chất hữu cơ bay hơi (VOCs) phát ra bởi Pseudomonas putida BP25 và hợp chất hữu cơ tổng hợp 2, 5-dimethylpyrazine đối với bệnh thán thư ở giống xoài Chausa. Việc xông khói trái cây phòng ngừa cho thấy mức độ nghiêm trọng của bệnh thán thư thấp hơn (18.44%) so với điều trị chữa bệnh (49.20%). Điều thú vị là điều trị xông khói đã duy trì đáng kể (p < 0.05) các tham số chất lượng trái cây như độ cứng, tổng chất rắn hòa tan và độ axit titratable. Các trái cây được xông khói với hợp chất bay hơi cho thấy hàm lượng bioactive cao hơn (tổng carotenoid, tổng phenolic và tổng flavonoid) và hoạt động sinh lý thấp hơn (tỷ lệ hô hấp và ethylene) so với các trái cây không được điều trị. Đánh giá tuổi thọ cho thấy thời gian lưu trữ được kéo dài thêm chín ngày. Kỹ thuật huỳnh quang chlorophyll không xâm lấn đã xác nhận thêm những thay đổi tích cực về chất lượng ở các trái cây được xông khói bằng hợp chất bay hơi. Kết quả cho thấy tiềm năng của sự kết hợp giữa vi khuẩn và hợp chất bay hơi tổng hợp 2, 5-dimethylpyrazine trong việc tăng cường sức chống chịu của trái cây với bệnh thán thư và kéo dài tuổi thọ của xoài.

Từ khóa

#bệnh thán thư #xoài #hợp chất hữu cơ bay hơi #Pseudomonas putida #2 #5-dimethylpyrazine #tuổi thọ trái cây

Tài liệu tham khảo

Agisha, V. N., Kumar, A., Eapen, S. J., Sheoran, N., & Suseelabhai, R. (2019). Broad-spectrum antimicrobial activity of volatile organic compounds from endophytic Pseudomonas putida BP25 against diverse plant pathogens. Biocontrol Science and Technology, 29, 1069–1089. https://doi.org/10.1080/09583157.2019.1657067 Aldea, M., Frank, T. D., & DeLucia, E. H. (2006). A method for quantitative analysis of spatially variable physiological processes across leaf surfaces. Photosynthesis Research, 90, 161–172. https://doi.org/10.1007/s11120-006-9119-z Ali, A., Noh, N. M., & Mustafa, M. A. (2015). Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food Packaging and Shelf Life, 3, 56–61. https://doi.org/10.1016/j.fpsl.2014.10.003 Alkan, N., Friedlander, G., Ment, D., Prusky, D., & Fluhr, R. (2015). Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytologist, 205, 801–815. https://doi.org/10.1111/nph.13087 AOAC. (2006). Official methods of analysis. Association of Official Analytical Chemists International. Aravind, R., Kumar, A., Eapen, S. J., & Ramana, K. V. (2009). Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: Isolation, identification, and evaluation against Phytophthora capsici. Letters in Applied Microbiology, 48, 58–64. https://doi.org/10.1111/j.1472-765X.2008.02486.x Archana, T. J., Gogoi, R., Kaur, C., Varghese, E., Sharma, R. R., Srivastav, M., Tomar, M., Kumar, M., & Kumar, A. (2021). Bacterial volatile mediated suppression of postharvest anthracnose and quality enhancement in mango. Postharvest Biology and Technology, 177, 111525. https://doi.org/10.1016/j.postharvbio.2021.111525 Arrebola, E., Sivakumar, D., & Korsten, L. (2010). Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biological Control, 53, 122–128. https://doi.org/10.1016/j.biocontrol.2009.11.010 Barman, K., & Asrey, R. (2014). Salicylic acid pre-harvest treatment alleviates chilling injury, preserves bioactive compound and enhances shelf life of mango fruit during cold storage. Journal of Scientific and Industrial Research, 73, 713–718. Bates, L. S., Waldrene, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207. https://doi.org/10.1007/BF00018060 Belin, E., Rousseau, D., Boureau, T., & Caffier, V. (2013). Thermography versus chlorophyll fluorescence imaging for detection and quantification of apple scab. Computers and Electronics in Agriculture, 90, 159–163. https://doi.org/10.1016/j.compag.2012.09.014 Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., & Roits, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122, 419–428. https://doi.org/10.1111/j.1399-3054.2004.00433.x Blanco-Ulate, B., Vincenti, E., Powell, A. T., & Cantu, D. (2013). Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Frontiers in Plant Science, 4, 142. https://doi.org/10.3389/fpls.2013.00142 Brummell, D. A., & Harpster, M. H. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 47(1–2), 311–340. https://doi.org/10.1023/A:1010656104304 Calvo, H., Mendiara, I., Arias, E., Gracia, A. P., Blanco, D., & Venturini, M. E. (2020). Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens. Postharvest Biol Technol, 166. https://doi.org/10.1016/j.postharvbio.2020.111208 Cappellari, L. D., Chiappero, J., Palermo, T. B., Giordano, W., & Banchio, E. (2020). Volatile organic compounds from Rhizobacteria increase the biosynthesis of secondary metabolites and improve the antioxidant status in Mentha piperita L. Grown under Salt Stress. Agronomy, 10, 1094. https://doi.org/10.3390/agronomy10081094 Cecchini, N. M., Monteoliva, M. I., & Alvarez, M. E. (2011). Proline dehydrogenase contributes to pathogen defense in arabidopsis. Plant Physiology, 155, 1947–1959. https://doi.org/10.1104/pp.110.167163 Choi, S. K., Jeong, H., Kloepper, J. W., & Ryu, C. M. (2014). Genome sequence of Bacillus amyloliquefaciens GB03, an active ingredient of the first commercial biological control product. Genome Announcements, 2, e01092–e01014. https://doi.org/10.1128/genomea.01092-14 Civille, G., & Carr, B. (2015). Sensory Evaluation Techniques (fifth ed.). CRC Press. Conner, R. L., McAndrew, D. W., Kiehn, F. A., Chapman, S. R., & Froese, N. T. (2004). Effect of foliar fungicide application timing on the control of bean anthracnose in the navy bean ‘navigator’. Canadian Journal of Plant Pathology, 26, 299–303. https://doi.org/10.1080/07060660409507147 Curvers, K., Seifi, H., Mouille, G., de Rycke, R., Asselbergh, B., Van Hecke, A., Vanderschaeghe, D., Hofte, H., Callewaert, N., Breusegem, F. V., & Höfte, M. (2010). Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. Plant Physiology, 154(2), 847–860. https://doi.org/10.1104/pp.110.158972 Di Francesco, A., Di Foggia, M., & Baraldi, E. (2020). Aureobasidium pullulans volatile organic compounds as alternative postharvest method to control brown rot of stone fruits. Food Microbiology, 87. https://doi.org/10.1016/j.fm.2019.103395 Farag, M. A., Zhang, H., & Ryu, C. M. (2013). Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. Journal of Chemical Ecology, 39(7), 1007–1018. https://doi.org/10.1007/s10886-013-0317-9 Fisher, M. C., Hawkins, N. J., Sanglard, D., & Gurr, S. J. (2018). Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 360, 739–742. https://doi.org/10.1126/science.aap7999 Gao, H., Li, P., Xu, X., Zeng, Q., & Guan, W. (2018). Research on volatile organic compounds from Bacillus subtilis CF-3: Biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00456 Gayoso, C., Pomar, F., NovoUzal, E., Merino, F., & Ilárduya, Ó. M. (2010). The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biology, 10, 232–250. https://doi.org/10.1186/1471-2229-10-232 Ge, Y. H., Wei, M. L., Li, C. Y., Chen, Y. R., Lv, J. Y., & Li, J. R. (2017). Effect of acibenzolar-S-methyl on energy metabolism and blue mould of nanguo pear fruit. Scientia Horticulturae, 225, 221–225. https://doi.org/10.1016/j.scienta.2017.07.012 Gotor-Vila, A., Teixidó, N., Di Francesco, A., Usall, J., Ugolini, L., Torres, R., & Mari, M. (2017). Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciensCPA-8 against fruit pathogen decays of cherry. Food Microbiology, 64, 219–225. https://doi.org/10.1016/j.fm.2017.01.006 Hassan, M. K., Dann, E. K., & Irving, D. E. (2007). Concentrations of constitutive alk (en) ylresorcinols in the peel of commercial mango varieties and resistance to postharvest anthracnose. Physiological and Molecular Plant Pathology, 71, 158–165. https://doi.org/10.1016/j.pmpp.2007.12.005 Hassan, M. K., Irving, D. E., & Dann.E.K. (2009). Sap properties and alk(en)yl resorcinol concentrations in Australian grown mangoes. Annals of Applied Biology, 154, 419–427. https://doi.org/10.1111/j.1744-7348.2008.00313.x Hoson, T., & Wakabayashi, K. (2015). Role of the plant cell wall in gravity resistance. Phytochemistry, 112, 84–90. https://doi.org/10.1016/j.phytochem.2014.08.022 Hossain, M. (2017). Management of post-harvest anthracnose disease of mango caused by Colletotrichum gloeosporioides. Doctoral dissertation. Department of Plant Pathology, Sher-e-Bangla Agricultural University. https://www.ctahr.hawaii.edu/oc/freepubs/pdf/pd-48.pdf Huang, M., Sanchez-Moreiras, A. M., Abel, C., Sohrabi, R., Lee, S., Gershenzon, J., & Tholl, D. (2012). The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytologist, 193, 997–1008. https://doi.org/10.1111/j.1469-8137.2011.04001.x Huybrechts, C., & Valcke, R. (2005). Comparing the physiological changes in apples and pears during shelf-life measured by fluorescence imaging. Acta Horticulturae, 682, 73–78. https://doi.org/10.17660/ActaHortic.2005.682.2 Intana, W., Kheawleng, S., & Sunpapao, A. (2021). Trichoderma asperellum T76-14 released volatile organic compounds against postharvest fruit rot in muskmelons (Cucumis melo) caused by fusarium incarnatum. Journal of Fungi, 7, 46. https://doi.org/10.3390/jof7010046 Jabeen, R., Rahman, S. R., & Rais, A. (2011). Evaluation BLB resistance/aggressiveness in rice through best inoculums concentration, inoculation and application methods. Pakistan Journal of Botany, 43(5), 2635–2635. Jha, S. K., Sethi, S., Srivastava, M., Dubey, A. K., Sharma, R. R., Samuel, D. V. K., & Singh, A. K. (2010). Firmness characteristics of mango hybrids under ambient storage. Journal of Food Engineering, 97, 208–212. https://doi.org/10.1016/j.jfoodeng.2009.10.011 Kanchiswamy, C. N., Malnoy, M., & Maffei, M. E. (2015). Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.0015 Kasampalis, D. S., Tsouvaltzis, P., & Siomos, A. S. (2020). Chlorophyll fluorescence, non-photochemical quenching, and light harvesting complex as alternatives to color measurement, in classifying tomato fruit according to their maturity stage at harvest and in monitoring postharvest ripening during storage. Postharvest Biology and Technology, 161, 111036. https://doi.org/10.1016/j.postharvbio.2019.111036 Köhl, J., Booij, K., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 64, 469–487. https://doi.org/10.3389/fpls.2019.00845 Kottb, M., Gigolashvili, T., Grosskinsky, D. K., & Piechulla, B. (2015). Trichoderma volatiles affecting Arabidopsis: From inhibition to protection against phytopathogenic fungi. Frontiers in Microbiology, 6, 995. https://doi.org/10.3389/fmicb.2015.00995 Lechaudel, M., Urban, L., & Joas, J. (2010). Chlorophyll fluorescence, a nondestructive method to assess maturity of mango fruits (cv. “Cogshall”) without growth conditions Bias. Journal of Agricultural and Food Chemistry, 58(13), 7532–7538. https://doi.org/10.1021/jf101216t Lee, B., Farag, M. A., Park, H. B., Kloepper, J. W., Lee, S. H., & Ryu, C. M. (2012). Induced resistance by a long-chain bacterial volatile: Elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS One, 7, e48744. https://doi.org/10.1371/journal.pone.0048744 Lemos, W. J. F., Binati, R. L., Felis, G. E., Slaghenaufi, D., Ugliano, M., & Torriani, S. (2020). Volatile organic compounds from Starmerella bacillaris to control gray mold on apples andmodulate cider aroma profile. Food Microbiology, 89, 103446. https://doi.org/10.1016/j.fm.2020.103446 Lou, H., Ya, H., Lingying, Z., Peng, S., & Hongfei, L. (2012). Nondestructive evaluation of the changes of total flavonoid, total phenols, ABTS and DPPH radical scavenging activities, and sugars during mulberry (Morus alba L.) fruits development by chlorophyll fluorescence and RGB intensity values, LWT-food. Science and Technology, 47(1), 19–24. https://doi.org/10.1016/j.lwt.2012.01.008 Lu, Y., & Lu, R. (2020). Enhancing chlorophyll fluorescence imaging under structured illumination with automatic vignetting correction for detection of chilling injury in cucumbers. Computers and Electronics in Agriculture, 168, 105145. https://doi.org/10.1016/j.compag.2019.105145 Maffei, M., Camusso, W., & Sacco, S. (2001). Effect of Mentha piperita essential oil and monoterpenes on cucumber root membrane potential. Phytochemistry, 58, 703–707. https://doi.org/10.1016/S0031-9422(01)00313-2 Martins, S. J., Faria, A. F., Pedroso, M. P., Cunha, M. G., Rocha, M. R., & Medeiros, F. H. V. (2019). Microbial volatiles organic compounds control anthracnose (Colletotrichum lindemuthianum) in common bean (Phaseolus vulgaris L.). Biological Control, 131, 36–42. https://doi.org/10.1016/j.biocontrol.2019.01.003 Moral, J., Bouhmidi, K., & Trapero, A. (2008). Influence of fruit maturity, cultivar susceptibility, and inoculation method on infection of olive fruit by Colletotrichum acutatum. Plant Disease, 92, 1421–1426. https://doi.org/10.1094/PDIS-92-10-1421 Naznin, H. A., Kiyohara, D., Kimura, M., Miyazawa, M., Shimizu, M., & Hyakumachi, M. (2014). Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One, 9, e86882. https://doi.org/10.1371/journal.pone.0086882 Nedbal, L., Soukupová, J., Whitmarsh, J., & Trtilek, M. (2000). Postharvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality. Photosynthetica, 38, 571–579. https://doi.org/10.1023/A:1012413524395 Nelson, S. C. (2008). Mango anthracnose (Colletotrichum gloeosporioides).University of Hawaii-Cooperative Extension Service. College of Tropical Agriculture and Human Resources. Plant Disease, PD-48. https://www.ctahr.hawaii.edu/oc/freepubs/pdf/pd-48.pdf Oro, L., Feliziani, E., Ciani, M., Romanazzi, G., & Comitini, F. (2018). Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. International Journal of Food Microbiology, 265, 18–22. https://doi.org/10.1016/j.ijfoodmicro.2017.10.027 Park, Y. S., Dutta, S., Ann, M., Raaijmakers, J. M., & Park, K. (2015). Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochemical and Biophysical Research Communications, 461, 361–365. https://doi.org/10.1023/A:1012413524395 Pena, L. C., Jungklaus, G. H., Savi, D. C., Ferreira-Maba, L., Servienski, A., Maia, B. H. L. N. S., Annies, V., Galli-Terasawa, L. V., Glienke, C., & Kava, V. (2019). Muscodor brasiliensis sp. nov. produces volatile organic compounds with activity against Penicillium digitatum. Microbiological Research, 221, 28–35. https://doi.org/10.1016/j.micres.2019.01.002 Perez-Bueno, M. L., Pineda, M., & Baron, M. (2019). Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Frontiers in Plant Science, 10, 1135. https://doi.org/10.3389/fpls.2019.01135 Pieczywek, P. M., Cybulska, J., Szymańska-Chargot, M., Siedliska, A., Zdunek, A., & Nosalewicz, A. (2018). Early detection of fungal infection of stored apple fruit with optical sensors – Comparison of biospeckle, hyperspectral imaging and chlorophyll fluorescence. Food Control, 85, 327–338. https://doi.org/10.1016/j.postharvbio.2019.111036 Rajaofera, M. J. N., Wang, Y., Dahar, G. Y., Jin, P., Fan, L., Xu, L., Liu, W., & Miao, W. (2019). Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides. Pesticide Biochemistry and Physiology, 156, 170–176. https://doi.org/10.1016/j.pestbp.2019.02.019 Ranganna, S. (1999). Handbook of analysis and quality control for fruit and vegetable products, third edition. Tata McGraw- Hills education. Rodríguez, N. C., Melgarejo, L. M., & Blair, M. W. (2019). Purple passion fruit, Passiflora edulis Sims f. edulis, variability for photosynthetic and physiological adaptation in contrasting environments. Agronomy, 9(5), 231. https://doi.org/10.3390/agronomy9050231 Roy, S. K. (1973). A simple and rapid method for estimation of total carotenoid pigments in mango. Journal of Food Science and Technology, 10, 38–42. Rudrappa, T., Biedrzycki, M. L., Kunjeti, S. G., Donofrio, N. M., Czymmek, K. J., Paul W, P., & Bais, H. P. (2010). The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Communicative & Integrative Biology, 3(2), 130–138. https://doi.org/10.4161/2Fcib.3.2.10584 Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Paré, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134, 1017–1026. https://doi.org/10.1104/pp.103.026583 Sarkhosh, A., Vargas, A. I., Schaffer, B., Palmateer, A. J., Lopez, P., Soleymani, A., & Farzaneh, M. (2017). Postharvest management of anthracnose in avocado (Persea americana mill.) fruit with plant-extracted oils. Food Packaging and Shelf Life, 12, 16–22. https://doi.org/10.1016/j.fpsl.2017.02.001 Shadle, G. L., Wesley, S. V., Korth, K. L., Chen, F., Lamb, C., & Dixon, C. (2003). Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry, 64, 153–161. https://doi.org/10.1016/s0031-9422(03)00151-1 Shah, S., Hashmi, M. S., Qazi, I. M., Durrani, Y., Sarkhosh, A., Hussain, I., & Brecht, J. K. (2021). Pre-storage chitosan-thyme oil coating control anthracnose in mango fruit. Scientia Horticulturae, 284, 110139. https://doi.org/10.1016/j.scienta.2021.110139 Sharifi, R., & Ryu, C. M. (2016). Making healthier or killing enemies? Bacterial volatile-elicited plant immunity plays major role upon protection of Arabidopsis than the direct pathogen inhibition. Communicative & Integrative Biology, 9(4), 1197445. https://doi.org/10.1080/19420889.2016.1197445 Sheoran, N., Valiya Nadakkakath, A., Munjal, V., Kundu, A., Subaharan, K., Venugopal, V., Rajamma, S., Eapen, S. J., & Kumar, A. (2015). Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiological Research, 173, 66–78. https://doi.org/10.1016/j.micres.2015.02.001 Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent oxidants and antioxidants. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1 Sundravadana, S., Alice, D., Kuttalam, S., & Samiyappan, R. (2007). Efficacy of azoxystrobin on Colletotrichum gloeosporioides Penz growth and on controlling mango anthracnose. Journal of Agricultural and Biological Sciences, 2(3), 10–15. Supriya, A., Kumar, A., & Kudachikar, V. B. (2019). A comparison investigation on antioxidant activities, Constitutive Antifungal Phenolic Lipids and Phenolics Contents of Anthracnose Resistant and Susceptible Mango Fruit Cultivars. International journal of fruit science. https://doi.org/10.1080/15538362.2019.1668332 Tahir, H. A. S., Gu, Q., Wu, H., Raza, W., Hanif, A., & Wu, L. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Molecular Biosciences, 8, 1–11. https://doi.org/10.3389/fmicb.2017.00171 Thangamani, P. R., Kuppusamy, P., Peeran, M. F., & Gandhi, K. (2011). Morphological and physiological characterization of Colletotrichum musae the causal organism of banana anthracnose. World Journal of Agriculture and Soil Science, 7, 743–754. Tian, S. P., Yao, H. J., Deng, X., Xu, X. B., Qin, G. Z., & Chan, Z. L. (2007). Characterization and expression of β-1,3-glucanase genes in jujube fruit induced by the microbial biocontrol agent Cryptococcus laurentii. Phytopathology, 97, 260–268. https://doi.org/10.1094/PHYTO-97-3-0260 Toffano, L., Fialho, M. B., & Pascholati, S. F. (2017). Potential of fumigation of orange fruits with volatile organic compounds produced by Saccharomyces cerevisiae to control citrus black spot disease. Biological Control, 108, 77–82. https://doi.org/10.1016/j.biocontrol.2017.02.009 Tripathi, P., & Dubey, N. K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology, 32, 235–245. https://doi.org/10.1016/j.postharvbio.2003.11.005 Tronchet, M., Balagué, C., Kroj, T., Jouanin, L., & Roby, D. (2010). Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Molecular Plant Pathology, 11, 83–92. https://doi.org/10.1111/2Fj.1364-3703.2009.00578.x Vaishnav, A., Kumari, S., Jain, S., Varma, A., & Choudhary, D. K. (2015). Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. Journal of Applied Microbiology, 119, 539–551. https://doi.org/10.1111/jam.12866 Wang, X., Wang, L., Wang, J., Jin, P., Liu, H., & Zheng, Y. (2014). Bacillus cereus AR156-induced resistance to Colletotrichum acutatum is associated with priming of defence responses in loquat fruit. PLoS One, 9, e112494. https://doi.org/10.1371/journal.pone.0112494 Wang, Z., Zhong, T., Chen, X., Yang, B., Du, M., Wang, K., Zalán, Z., & Kan, J. (2021). Potential of volatile organic compounds emitted by Pseudomonas fluorescens ZX as biological fumigants to control Citrus green Mold decay at postharvest. Journal of Agricultural and Food Chemistry, 69(7), 2087–2098. https://doi.org/10.1021/acs.jafc.0c07375 Wu, F., Tong, X., Zhang, L., Mei, L., Guo, Y., & Wang, Y. (2020). Suppression of Rhizopus fruit rot by volatile organic compounds produced by Paenibacillus polymyxa CF05. Biocontrol Science and Technology, 30(12),1351–1364. https://doi.org/10.1080/09583157.2020.1826902 Xing, M., Zheng, L., Deng, Y., Xu, D., Xi, P., Li, M., Kong, G., & Jiang, Z. (2018). Antifungal activity of natural volatile organic compounds against litchi downy blight pathogen Peranophythora litchii. Molecules, 23, 1–15. https://doi.org/10.3390/molecules23020358 Xu, L., Zhu, L., Tu, L., Liu, L., Yuan, D., & Jin, L. (2011). Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histo-chemistry. Journal of Experimental Botany, 62, 5607–5621. https://doi.org/10.1093/jxb/err245 Yang, Z., Cao, S. F., Su, X. G., & Jiang, Y. M. (2014). Respiratory activity and mitochondrial membrane associated with fruit senescence in post harvest peaches in response to UV-C treatment. Food Chemistry, 161, 16–21. https://doi.org/10.1016/j.foodchem.2014.03.120 Ye, X., Chen, Y., Ma, S., Yuan, T., Wu, Y., Li, Y., Zhao, Y., Chen, S., Zhang, Y., Li, L., Li, Z., Huang, Y., Cao, H., & Cui, Z. (2020). Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiology, 91, 103502. https://doi.org/10.1016/j.fm.2020.103502 Yingsanga, P., Srilaong, V., Kanlayanarat, S., Noichinda, S., & Mcglasson, W. B. (2008). Relationship between browning and related enzymes (PAL, PPO, and POD) in rambutan fruit (Nephelium lappaceum Linn.) cvs. Rongrien and see-Chompoo. Postharvest Biology and Technology, 50, 164–168. https://doi.org/10.1016/j.postharvbio.2008.05.004 Zhang, S., Lin, H. T., Lin, M. S., Lin, Y. F., Chen, Y. H., Wang, H., Lin, Y. X., & Shi, J. (2019). Lasiodiplodia theobromae (pat.) Griff.& Maubl. Reduced energy status and ATPase activity and its relation to disease development and pericarp browning of harvested longan fruit. Food Chemistry, 275, 239–245. https://doi.org/10.1016/j.foodchem.2018.09.105 Zhang, X., Gao, Z., Zhang, X., Bai, W., Zhang, L., Pei, H., & Zhang, Y. (2020). Control effects of Bacillus siamensis G-3 volatile compounds on raspberry postharvest diseases caused by Botrytis cinerea and Rhizopus stolonifer. Biological Control, 141, 104135.https://doi.org/10.1016/j.biocontrol.2019.104135 Zheng, L., Situ, J. J., Zhu, Q. F., Xi, P. G., Zheng, Y., Liu, H. X., & Zhou, X. (2019). Identification of volatile organic compounds for the biocontrol of postharvest litchi fruit pathogen Peronophythora litchii. Postharvest Biology and Technology, 155, 37–46. https://doi.org/10.1016/j.postharvbio.2019.05.009 Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2