Phương pháp phân tích đã được xác thực hoàn toàn để định lượng nucleoside mono- và triphosphates nội sinh bằng cách kết hợp chiết xuất trực tuyến với sắc ký lỏng–khối phổ tandem

Springer Science and Business Media LLC - Tập 406 - Trang 2925-2941 - 2014
Christelle Machon1,2, Lars Petter Jordheim2,3, Jean-Yves Puy4, Isabelle Lefebvre4, Charles Dumontet3, Jérôme Guitton1,5
1Laboratoire de Biochimie et Toxicologie, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
2Laboratoire de Chimie Analytique, Université de Lyon, Lyon, France
3INSERM U1052 – CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
4Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-UM1-UM2, Université Montpellier 2, Montpellier Cedex 05, France
5Laboratoire de Toxicologie, Université Lyon 1, ISPB, Faculté de pharmacie, Lyon, France

Tóm tắt

Một phương pháp phân tích kết hợp chiết xuất pha rắn trực tuyến (SPE) và sắc ký lỏng–khối phổ tandem (LC-MS/MS) đã được phát triển để định lượng 16 nucleoside mono- và triphosphates nội sinh trong các mẫu tế bào. Việc phân chia được thực hiện trên cột carbon đồ sộ (PGC) mà không cần tác nhân đôi ion trong pha di động. Mức độ thấp của tác nhân đôi ion diethylamine (DEA) được thêm vào dung dịch tái cấu trúc là cần thiết để tránh hiện tượng đuôi đỉnh của nucleoside triphosphates. Máy khối phổ, một bộ ba quadrupole với nguồn ion hóa phun điện, đã được vận hành ở chế độ dương. Hai phân đoạn theo dõi phản ứng nhiều lần (MRM) đã được lập trình, mỗi phân đoạn là tiêu chuẩn nội. Việc chiết xuất và phân chia nucleoside mono- và triphosphates được thực hiện trong vòng 20 phút. Tổng thời gian cho một lần chạy là 37 phút. Đường cong hiệu chuẩn, được thực hiện với các nucleotide có gắn nhãn thêm vào ma trận mẫu, dao động từ 0,29 đến 18,8 pmol được tiêm cho deoxyribonucleotides và từ 3,9 đến 3.156 pmol cho ribonucleotides. Độ chính xác không sai lệch quá -14,6 và 10,2 % so với các giá trị danh nghĩa cho tất cả các hợp chất ở tất cả các mức độ. Kết quả CV đều thấp hơn 17,0 % ở mức LLOQ và 14,6 % ở các mức độ khác. Các mẫu kiểm soát chất lượng (QC) cũng đồng ý với tiêu chí chấp nhận, ngoại trừ QC thấp của GMP. Sự suy giảm ion, hiệu ứng ma trận, độ hồi phục chiết xuất và độ ổn định đã được đánh giá. Sau khi xác thực, phương pháp đã được áp dụng để đánh giá tác động của gemcitabine và hydroxyurea lên các hồ bơi nucleotide trong tế bào Messa.

Từ khóa

#nucleoside triphosphates #sắc ký lỏng #khối phổ tandem #chiết xuất pha rắn #phân tích hóa học

Tài liệu tham khảo

Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS, Kerem B (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–446 Jansen RS, Rosing H, de Wolf CJ, Beijnen JH (2007) Development and validation of an assay for the quantitative determination of cladribine nucleotides in MDCKII cells and culture medium using weak anion-exchange liquid chromatography coupled with tandem mass spectrometry. Rapid Commun Mass Spectrom 21:4049–4059 Cohen S, Jordheim LP, Megherbi M, Dumontet C, Guitton J (2010) Liquid chromatography methods for the determination of endogenous nucleotides and nucleotide analogs used in cancer therapy: a review. J Chrom B 878:1912–1928 Zhang W, Tan S, Paintsil E, Dutschman GE, Gullen EA, Chu E, Cheng YC (2011) Analysis of deoxyribonucleotide pools in human cancer cell lines using a liquid chromatography coupled with tandem mass spectrometry technique. Biochem Pharmacol 82:411–417 Yamaoka N, Kudo Y, Inazawa K, Inagawa S, Yasuda M, Mawatari KI, Nakagomi K, Kaneko K (2010) Simultaneous determination of nucleosides and nucleotides in dietary foods and beverages using ion-pairing liquid chromatography–electrospray ionization-mass spectrometry. J Chrom B 878:2054–2060 Zhao Y, Liu G, Liu Y, Yuan L, Hawthorne D, Shen JX, Guha M, Aubry A (2013) Improved ruggedness of an ion-pairing liquid chromatography/tandem mass spectrometry assay for the quantitative analysis of the triphosphate metabolite of a nucleoside reverse transcriptase inhibitor in peripheral blood mononuclear cells. Rapid Commun Mass Spectrom 27:481–488 Jansen RS, Rosing H, Schellens JHM, Beijnen JH (2009) Retention studies of 2′-2′-difluorodeoxycytidine and 2′-2′-difluorodeoxyuridine nucleosides and nucleotides on porous graphitic carbon: development of a liquid chromatography–tandem mass spectrometry method. J Chromatogr A 1216:3168–3174 Peifer S, Schneider K, Nürenberg G, Volmer DA, Heinzle E (2012) Quantitation of intracellular purine intermediates in different Corynebacteria using electrospray LC-MS/MS. Anal Bioanal Chem 404:2295–2305 Xing J, Apedo A, Tymiak A, Zhao N (2004) Liquid chromatographic analysis of nucleosides and their mono-, di- and triphosphates using porous graphitic carbon stationary phase coupled with electrospray mass spectrometry. Rapid Commun Mass Spectrom 18:1599–1606 Tuytten R, Lemière F, Van Dongen W, Esmans EL, Slegers H (2002) Short capillary ion-pair high performance liquid chromatography coupled with electrospray (tandem) mass spectrometry for the simultaneous analysis of nucleoside mono-, di- and triphosphates. Rapid Commun Mass Spectrom 16:1205–1215 Wang J, Lin T, Lai J, Cai Z, Yang MS (2009) Analysis of adenosine phosphates in HepG-2 cell by a HPLC–ESI-MS system with porous graphitic carbon as stationary phase. J Chrom B 877:2019–2024 Cordell RL, Hill SJ, Ortori CA, Barrett DA (2008) Quantitative profiling of nucleotides and related phosphate-containing metabolites in cultured mammalian cells by liquid chromatography tandem electrospray mass spectrometry. J Chrom B 871:115–124 Cohen S, Megherbi M, Jordheim LP, Lefebvre I, Perigaud C, Dumontet C, Guitton J (2009) Simultaneous analysis of eight nucleoside triphosphates in cell lines by liquid chromatography coupled with tandem mass spectrometry. J Chrom B 877:3831–3840 Darque A, Valette G, Rousseau F, Wang LH, Sommadossi JP, Zhou XJ (1999) Quantitation of intracellular triphosphate of emtricitabine in peripheral blood mononuclear cells from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 43(9):2245–2250 Font E, Rosario O, Santana J, García H, Sommadossi JP, Rodriguez JF (1999) Determination of zidovudine triphosphate intracellular concentrations in peripheral blood mononuclear cells from human immunodeficiency virus-infected individuals by tandem mass spectrometry. Antimicrob Agents Chemother 43(12):2964–2968 Robbins BL, Waibel BH, Fridland A (1996) Quantitation of intracellular zidovudine phosphates by use of combined cartridge-radioimmunoassay methodology. Antimicrob Agents Chemother 40(11):2651–2654 Chen L, Wang H, Zeng Q, Xu Y, Sun L, Xu H, Ding L (2009) Online coupling of solid-phase extraction to liquid chromatography—a review. J Chromatogr Sci 47:614–623 Shah VP, Midha KK, Findlay JWA, Hill HM, Hulse JD, McGilveray IJ, McKay G, Miller KJ, Patnaik RN, Powell ML, Tonelli A, Viswanathan CT, Yacobi A (2000) Bioanalytical method validation—a revisit with a decade of progress. Pharm Res 17(12):1551–1557 Kuklenyik Z, Martin A, Pau CP, Holder A, Youngpairoj AS, Zheng Q, Cong ME, Garcia-Lerma JG, Heneine W, Pirkle JL, Barr JR (2009) On-line coupling of anion exchange and ion-pair chromatography for measurement of intracellular triphosphate metabolites of reverse transcriptase inhibitors. J Chrom B 877:3659–3666 Vela JE, Olson LY, Huang A, Fridland A, Ray AS (2007) Simultaneous quantitation of the nucleotide analog adefovir, its phosphorylated anabolites and 2-deoxyadenosine triphosphate by ion-pairing LC/MS/MS. J Chrom B 848:335–343 Liu DY, Cojocaru L (2010) The determination of a tetra-phosphate compound in rat plasma. LC/MS/MS AAPS Annual Meeting and Exposition, New Orleans, LA, November 2010 Tuytten R, Lemière F, Witters E, Van Dongena W, Slegers H, Newton RP, Van Onckelen H, Esmans EL (2006) Stainless steel electrospray probe: a dead end for phosphorylated organic compounds? J Chromatogr A 1104:209–221 Jansen RS, Rosing H, Schellens JHM, Beijnen JH (2011) Mass spectrometry in the quantitative analysis of therapeutic intracellular nucleotide analogs. Mass Spec Rev 30:321–343 Wakamatsu A, Morimoto K, Shimizu M, Kudoh S (2005) A severe peak tailing of phosphate compounds caused by interaction with stainless steel used for liquid chromatography and electrospray mass spectrometry. J Sep Sci 28(14):1823–1830 Antonopoulos A, Favetta P, Helbert W, Lafosse J (2007) On-line liquid chromatography–electrospray ionisation mass spectrometry for κ-carrageenan oligosaccharides with a porous graphitic carbon column. J Chromatogr A 1147:37–41 Vainchtein LD, Rosing H, Schellens JHM, Beijnen JH (2010) A new validated HMPL-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5′-fluorodihydrouracil, in human plasma. Biomed Chromatogr 24:374–386 Yamaoka N, Inazawa K, Inagawa S, Yasuda M, Mawatari K, Nakagomi K, Fujimori S, Yamada Y, Kaneko K (2011) Simultaneous determination of purine and pyrimidine metabolites in hprt-deficient cell lines. Nucleosides Nucleotides Nucleic Acids 30:1256–1259 Petroselli G, Erra-Balsells R, Cabrerizo FM, Lorente C, Capparelli AL, Braun AM, Oliveros E, Thomas AH (2007) Photosensitization of 2′-deoxyadenosine-5′-monophosphate by pterin. Org Biomol Chem 5:2792–2799 Yang FQ, Li DQ, Feng K, Hu DJ, Li SP (2010) Determination of nucleotides, nucleosides and their transformation products in Cordyceps by ion-pairing reversed-phase liquid chromatography–mass spectrometry. J Chromatogr A 1217:5501–5510 Coulier L, Gerritsen H, van Kampen JJA, Reedijk ML, Luider TM, Osterhaus ADME, Gruters RA, Brüll L (2011) Comprehensive analysis of the intracellular metabolism of antiretroviral nucleosides and nucleotides using liquid chromatography–tandem mass spectrometry and method improvement by using ultra performance liquid chromatography. J Chrom B 879:2772–2782 Fung EN, Cai Z, Burnette TC, Sinhababu AK (2001) Simultaneous determination of Ziagen and its phosphorylated metabolites by ion-pairing high-performance liquid chromatography–tandem mass spectrometry. J Chrom B 754:285–295 Pruvost A, Théodoro F, Agrofoglio L, Negredo E, Bénech H (2008) Specificity enhancement with LC-positive ESI-MS/MS for the measurement of nucleotides: application to the quantitative determination of carbovir triphosphate, lamivudine triphosphate and tenofovir diphosphate in human peripheral blood mononuclear cells. J Mass Spectrom 43:224–233 Quinn R, Basanta-Sanchez M, Rose RE, Fabris D (2013) Direct infusion analysis of nucleotide mixtures of very similar or identical elemental composition. J Mass Spectrom 48:703–712 Shi G, Wu JT, Li Y, Geleziunas R, Gallagher K, Emm T, Olah T, Unger S (2002) Novel direct detection method for quantitative determination of intracellular nucleoside triphosphates using weak anion exchange liquid chromatography tandem mass spectrometry. Rapid Commun Mass Spectrom 16:1092–1099 Van Moorsel CJA, Bergman AM, Veerman G, Voorn DA, Ruiz van Haperen VWT, Kroep JR, Pinedo HM, Peters GJ (2000) Differential effects of gemcitabine on ribonucleotide pools of twenty-one solid tumor and leukaemia cell lines. Biochim Biophys Acta 1474:5–12 Golkar SO, Czene S, Gokarakonda A, Haghdoost S (2013) Intracellular deoxyribonucleotide pool imbalance and DNA damage in cells treated with hydroxyurea, an inhibitor of ribonucleotide reductase. Mutagenesis 28:653–660 Hakansson P, Hofer A, Thelander L (2006) Regulation of mammalian ribonucleotides reduction and dNTP pools after DNA damage and in resting cells. J Biol Chem 281:7834–7841 Bianchi V, Pontis E, Reichard P (1986) Changes of deoxyribonucleoside triphosphate pools induced by hydroxyurea and their relation to DNA synthesis. J Biol Chem 261(34):16037–16042 Collins A, Oates D (1987) Hydroxyurea: effects on deoxyribonucleotide pool size correlated with effects on DNA repair on mammalian cells. Eur J Biochem 169:299–305