Fully electronically tunable sinusoidal oscillator employing single VDTA and all grounded components
Tóm tắt
This article contributes a new configuration of the current mode (CM) sinusoidal oscillator employing a single voltage differencing transconductance amplifier (VDTA), as an active building block, and all grounded passive elements. This fully electronically tunable circuit offers independent control of its design parameters i.e., oscillation condition (OC) and oscillation frequency (OF). To validate the design concept, along with the regular mathematics, simulations have been performed using PSPICE software. Experimental results have been obtained by the commercially available IC i.e., LM13700, to validate the theoretical expectations.
Tài liệu tham khảo
Senani, R., Bhaskar, D. R., Singh, A. K., & Singh, V. K. (2013). Current feedback amplifiers and their applications. Springer.
Senani, R., Bhaskar, D. R., Singh, V. K., & Sharma, R. K. (2016). Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks. Springer.
Komanapalli ,G., & Pandey ,R. (2019). New sinusoidal oscillator configurations using operational transresistance amplifier. The International Journal of Circuit Theory and Applications,, pp 11–17.
Gonzalez ,G.(2007) Foundations of Oscillator Circuit Design. Artech House.
Arbel, A. F., & Goldminz, L. (1992). Output stage for current-mode feedback amplifiers, theory and applications. Analog Integrated Circuits and Signal Processing, 2.(3), 243–255.
Senani, R. (1985). New types ofsinewave oscillators. IEEE Transactions on Instrumentation and Measurement, 34 (3), 461–463.
Sharma, R. K. , Arora,T. S. & Senani, R. (2017). On the realisation of canonic single resistance-controlled oscillators using third-generation current conveyors. IET Circuits, Devices & Systems, 11(1),10–20.
Çam, U. (2002). A novel single-resistance-controlled sinusoidal oscillator employing single operational transresistance amplifier. Analog Integrated Circuits and Signal Processing, 32 (2),183–186.
Gupta, S. S. & Senani, R. (2018). State variable synthesis of single-resistance controlled grounded capacitor oscillators using only two CFOAs: Additional new realisations. IEE Proceedings - Circuits, Devices and Systems, 145 (6), 415–418.
Arora, T. S., & Gupta, S. (2018). A new voltage mode quadrature oscillator using grounded capacitors: An application of CDBA. Engineering Science and Technology an International Journal, 21(1), 43–49.
Abaci, A., & Yuce, E. (2017). Modified DVCC based quadrature oscillator and lossless grounded inductor simulator using grounded capacitor(s). AEU - International Journal of Electronics and Communications 76,, 86–96.
Bhaskar, D. R., & Senani, R. (2005). New FTFN-based grounded-capacitor SRCO with explicit current-mode output and reduced number of resistors. AEU - International Journal of Electronics and Communications, 59(1), 48–51.
Wang, S. F., Chen,H. P., Ku, Y. & Lee, C. L. (2020). Versatile voltage-mode biquadratic filter and quadrature oscillator using four OTAs and two grounded capacitors. Electron, 9 (9), 1–27.
Biolek, D. (2006). Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proceedings - Circuits, Devices and Systems, 153 (3), 1–6.
Prasad, D., Bhaskar, D. R., & Srivastava, M. (2014). New single VDCC-based explicit current-mode SRCO employing all grounded passive components. Electronics, 18 (2), 81–88.
Yesil, A., Kacar, F., & Gurkan, K. (2016). Design and experimental evaluation of quadrature oscillator employing single FB-VDBA. The Journal of Electrical Engineering, 67 (2),137–142.
Prasad, D., & Bhaskar, D. R. (2012). Electronically controllable explicit current output sinusoidal oscillator employing single VDTA. ISRN Electron., , 1–5.
Sotner, R., Jerabek, J., Herencsar, N., Petrzela, J., Vrba, K., & Kincl, Z. (2013). Tunable oscillator derived from Colpitts structure with simply controllable condition of oscillation and synthetic inductor based on current amplifier and voltage differencing transconductance amplifier. ELECO 2013 - 8th Int. Conf. Electr. Electron. Eng., pp. 21–25.
Jantakun, A. (2016). Voltage differencing transconductance amplifiers based mixed-mode quadrature oscillator. Rev Roumaine des Sciences Techniques-Series Electrotechnique et Energetique, 61 (1),S68–S72.
Tangsrirat, W. (2017). Compact quadrature oscillator with voltage and current outputs using only single VDTA and grounded capacitors. Indian Journal of Pure & Applied Physics, 55 (4), 254–260.
Banerjee, K., Singh, D., & Paul, S. K. (2019). Single VDTA based resistorless quadrature oscillator. Analog Integrated Circuits and Signal Processing, 100 (2), 495–500.
Li, Y. A. (2018). Synthesis of compact VDTA-based Wien oscillators with grounded capacitors. AEU - International Journal of Electronics and Communications, 84, 281–289.
Herencsar, N., Sotner, R. , Koton, J., Misurec, J. & Vrba, K.(2013). New compact VM four-phase oscillator employing only single z-copy VDTA and all grounded passive elements. Elektron. ir Elektrotechnika, 19 (10), 87–90.
Chandee, S., Jaikla, W., Suwanjan, P., Pookrongtong, N., & Kwawsibsam, A. (2014). New quadrature sinusoidal oscillator with amplitude controllability. JICTEE 2014 - 4th Jt. Int. Conf. Inf. Commun. Technol. Electron. Electr. Eng.,vol 1, pp 7–10.
Pourak, T., Suwanjan, P., Jaikla, W., & Maneewan, S. (2012). Simple quadrature sinusoidal oscillator with orthogonal control using single active element. In IEEE International Conference on Electron Devices Solid State Circuit, EDSSC, 2012, pp 2–5.
Tangsrirat, W. (2018). Voltage differencing transconductance amplifier-based quadrature oscillator, and biquadratic filter realization with all grounded passive elements. Journal of Communications Technology and Electronics, 63(12), 1418–1423.
Li, Y. A. (2019). Synthesis approach for compact VDTA quadrature sine-wave oscillators with orthogonal control. Journal of Circuits, Systems and Computers, 28 (12), 1–16.
Gupta, S., & Arora, T. S. (2021). Design and experimentation of VDTA based oscillators using commercially available integrated circuits. Analog Integrated Circuits and Signal Processing, 0123456789, 1–16.
Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing: Classification, review, and new proposals. Radioengineering, 17(4), 15–32.
Bhaskar, D. R., & Senani, R. (1993). New current-conveyor-based single-resistance-controlled/ voltage-controlled oscillator employing grounded capacitors. Electronics Letters, Indexing, 29 (7), 30–32.
Arora, T. S., Rohil, B., & Gupta, S. (2019). Fully integrable/cascadable CM universal filter and CMquadrature oscillator using VDCC and only grounded passive elements. Journal of Circuits, Systemsand Computers, 28 (11), 1–37. https://doi.org/10.1142/s0218126619501810.
Sotner, R. (2015). Comparison of two solutions of quadrature oscillators with linear control of frequency of oscillation employing modern commercially available devices. Circuits, Systems, and Signal Processing, pp 1–21.
Sotner, R., Jerabek, J., Herencsar, N., Hrubos, Z., Dostal, T., & Vrba, K. (2012). Study of adjustable gains for control of oscillation frequency and oscillation condition in 3R–2C oscillator. Radioengineering, 21(1), 392–402.
Satipar, D., Intani, P., & Jaikla, W. (2017). Electronically tunable quadrature sinusoidal oscillator with equal output amplitudes during frequency tuning process. Journal of Electrical and Computer Engineering, , pp 23–26.
Srivastava, M., & Prasad, D. (2016). VDCC based dual-mode quadrature sinusoidal oscillator with outputs at appropriate impedance levels. Advances in Electrical & Electronic Engineering, 14 (2), 168–177.
