Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân tích đầy đủ, có ràng buộc và ngẫu nhiên hỗ trợ bằng chứng cho các thay đổi thể tích trong chuỗi động đất Basel
Tóm tắt
Các thay đổi thể tích đồng bộ thường được hiểu là sự nứt gãy kéo theo phản ứng với việc tiêm chất lỏng trong quá trình kích thích mỏ địa nhiệt. Những thay đổi thể tích này biểu hiện dưới dạng các thành phần tensor mômen đồng nhất, do đó có thể coi là một tiêu chí đo lường hiệu quả kích thích thủy lực. Các phân tích gần đây đã phát hiện các mômen đồng nhất đáng kể của các trận động đất M2+ trong quá trình kích thích thủy lực mỏ địa nhiệt tại Basel, Thụy Sĩ vào năm 2006. Những kết quả này mâu thuẫn với các cơ chế triệu chứng động đầu tiên, phù hợp chặt chẽ với các nguồn cắt mà không có thay đổi thể tích. Tại đây, chúng tôi xem xét lại các sự kiện Basel có cường độ từ 1.7 trở lên với các phép đảo ngược tensor mômen toàn phần và ngẫu nhiên nhằm cung cấp thêm và/hoặc các bằng chứng hỗ trợ cho sự tồn tại của các nguồn thể tích, nếu có. Chúng tôi cũng áp dụng các cơ chế đứt gãy chỉ có độ lệch, và các cơ chế nứt kéo và cắt chồng chéo, mà chúng tôi tin rằng là những ràng buộc có ý nghĩa cho các trận động đất do chất lỏng kích thích. Kết quả là, chúng tôi chỉ tìm thấy một trận động đất duy nhất có nứt gãy thể tích có ý nghĩa thống kê. Do đó, các mô hình không gian và thời gian của các nguồn do chất lỏng kích thích chỉ nên được coi như là một chỉ báo, mặc dù chúng gợi ý một mối quan hệ rõ ràng giữa việc tiêm chất lỏng và các cơ chế đứt gãy. Mặt khác, chúng tôi xác nhận rằng hầu hết các tensor mômen đã đảo ngược (bao gồm cả tensor có ý nghĩa thống kê) cho thấy một số bất nhất với các cơ chế triệu chứng động đầu tiên. Chúng tôi cho rằng đây là biểu hiện của một hình học đứt gãy phức tạp hơn, mà không có ràng buộc nào của chúng tôi có thể mô tả.
Từ khóa
#thay đổi thể tích #động đất #kích thích thủy lực #mỏ địa nhiệt #cơ chế đứt gãyTài liệu tham khảo
Baer, M., Deichmann, N., Braunmiller, J., Clinton, J., Husen, S., Faeh, D., et al. (2007). Earthquakes in Switzerland and surrounding regions during 2006. Swiss Journal of Geosciences, 100, 517–528.
Ben-Zion, Y., & Ampuero, J. P. (2009). Seismic radiation from regions sustaining material damage. Geophysical Journal International, 178(3), 1351–1356.
Bowers, D., & Hudson, J. A. (1999). Defining the scalar moment of a seismic source with a general moment tensor. Bulletin of the Seismological Society of America, 89(5), 1390–1394.
Catalli, F., Meier, M.-A., & Wiemer, S. (2013). The role of Coulomb stress changes for injection-induced seismicity: the Basel enhanced geothermal system. Geophysical Research Letters,. doi:10.1029/2012GL054147.
Cuenot, N., Charléty, J., Dorbath, L., & Haessler, H. (2006). Faulting mechanisms and stress regime at the European HDR site of Soultz-sous-Forêts, France. Geothermics, 35(561–575), 2006. doi:10.1016/j.geothermics.11.007.
Deichmann, N., & Ernst, J. (2009). Earthquake focal mechanisms of the induced seismicity in 2006 and 2007 below Basel (Switzerland). Swiss Journal of Geosciences, 102, 457–466. doi:10.1007/s00015-009-1336-y.
Deichmann, N., & Giardini, D. (2009). Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismological Research Letters, 80, 5. doi:10.1785/gssrl.80.5.784.
Deichmann, N., Kraft, T., & Evans, K. F. (2014). Identification of faults activated during the stimulation of the Basel geothermal project from cluster analysis and focal mechanisms of the larger magnitude events. Geothermics,. doi:10.1016/j.geothermics.2014.04.001. (in press).
Dreger, D. S. (2003). TDMT_INV: time domain seismic moment tensor INVersion. International Handbookof Earthquake and Engineering Seismology, 81B, 1627.
Fischer, T., & Guest, A. (2011). Shear and tensile earthquakes caused by fluid injection. Geophysical Research Letters, 38, 5.
Ford, S. R., Dreger, D. S., & Walter, W. R. (2009a). Network sensitivity solutions for regional moment-tensor inversions. Bulletin of Seismological Society of America, 100(5A), 1962–1970. doi:10.1785/0120090140.
Ford, S. R., Dreger, D. S., & Walter, W. R. (2009b). Identifying isotropic events using a regional moment tensor inversion. Journal of Geophysical Research Solid Earth, 114, B1. doi:10.1029/2008JB005743.
Goertz-Allmann, B. P., Edwards, B., Betmann, F., Deichmann, N., Clinton, J., Fäh, D., & Giardini, D. (2011). A new empirical magnitude scaling relation for Switzerland. Bulletin of Seismological Society of America, 101(6), 3088–3095. doi:10.1785/0120100291.
Griffith, W. A., Sanz, P. F., & Pollard, D. D. (2009). Influence of outcrop scale fractures on the effective stiffness of fault damage zone rocks. Pure and Applied Geophysics,. doi:10.1007/s00024-009-0519-9.
Guilhem, A., Hutchings, L. J., Dreger, D. S., & Johnson, L. (2014). Moment tensor inversions of the ~M3 earthquakes in the Geysers Geothermal Fields, California. Journal of Geophysical Research, 119(3), 2121–2137. doi:10.1002/2013JB010271.
Hudson, J. A., Pearce, R. G., & Rogers, R. M. (1989). Source type plot for inversion of the moment tensor. Journal of Geophysical Research, 94(B1), 765–774.
Johnson, L. (2014a). Source mechanisms of induced earthquakes at the Geysers Geothermal Field. Pure and Applied Geophysics,. doi:10.1007/s00024-014-0795-x.
Johnson, L. (2014b). A source model for induced earthquakes in the Geysers geothermal reservoir. Pure and Applied Geophysics,. doi:10.1007/s00024-014-0798-7.
Jost, M. L., & Herrmann, R. H. (1989). A student’s guide to and review of moment tensors. Seismological Research Letters, 60, 37–57.
Julian, B. R., Miller, A. D., & Foulger, G. R. (1998). Non-double-couple earthquakes I. Theory. Reviews of Geophysics, 36, 525–549.
Kanamori, H., Ekström, G., Dziewonski, A., Barker, J. S., & Sipkin, S. A. (1993). Seismic radiation by magma injection: an anomalous seismic event near Tori Shima, Japan. Journal of Geophysical Research, 98(B4), 6511–6522.
Kawakatsu, H. (1991). Insignificant isotropic component in the moment tensor of deep earthquakes. Nature, 351, 50–53. doi:10.1038/351050a0.
Konstantinou, K. I., Kao, H., Lin, C. H., & Liang, W.-T. (2003). Analysis of broad-band regional waveforms of the 1996 September 29 earthquake at Bárdarbunga volcano, central Iceland: investigation of the magma injection hypothesis. Geophysical Journal International, 154, 134–145.
Minson, S., & Dreger, D. (2008). Stable inversions for complete moment tensors. Geophysical Journal International, 174, 585–592.
Minson, S. E., Dreger, D. S., Bürgmann, R., & Kanamori, H. (2007). Seismically and geodetically determined nondouble-couple source mechanisms from the 2000 Miyakejima volcanic earthquake swarm. Journal of Geophysical Research, 112, B10308. doi:10.1029/2006JB004847.
Misra, S., Mandal, N., Dhar, R., & Chakraborti, C. (2009). Mechanisms of deformation localization at the tips of shear fractures: findings from analogue experiments and field evidence. Journal of Geophysical Research, 114, B04204. doi:10.1029/2008JB005737.
Müller, G. (2001). Volume change of seismic sources from moment tensors. Bulletin of the Seismological Society of America, 91, 880–884.
Ripperger, J., Kästli, P., Fäh, D., & Giardini, D. (2009). Ground motion and macroseismic intensities of the seismic event related to geothermal reservoir stimulation below the city of Basel—observations and modeling. Geophysical Journal International, 179, 1757–1771. doi:10.1111/j.1365-246X.2009.04374.x.
Ross, A., Foulger, G. R., & Julian, B. R. (1996). Non-double-couple earthquake mechanisms at the Geysers geothermal area, California. Geophysical Research Letters, 23(8), 877–880.
Rössler, D., Krüger, F., & Rümpker, G. (2007). Retrieval of moment tensors due to dislocation point sources in anisotropic media using standard techniques. Geophysical Journal International, 169, 136–148. doi:10.1111/j.1365-246X.2006.03243.x.
Saikia, C. K. (1994). Modified frequency-wavenumber algorithm for regional seismograms using Filon’s quadrature: modeling of L g waves in eastern North America. Geophysical Journal International, 118, 142–158. doi:10.1111/j.1365-246X.1994.tb04680.x.
Scognamiglio, L., Tinti, E., & Michelini, A. (2009). Real-time determination of seismic moment tensor for the Italian region. Bulletin of the Seismological Society of America, 99, 2223–2242. doi:10.1785/0120080104.
Sileny, J., Hill, D. P., Eisner, L., & Cornet, F. H. (2009). Non-double-couple mechanisms of microearthquakes induced by hydraulic fracturing. Journal of Geophysical Research, 114, B08307. doi:10.1029/2008JB005987.
Tape, W., & Tape, C. (2012). A geometric setting for moment tensors. Geophysical Journal International, 190, 476–498. doi:10.1111/j.1365-246X.2012.05491.x.
Templeton, D. C., & Dreger, D. S. (2006). Non-double-couple earthquakes in the Long Valley Volcanic region. Bulletin of the Seismological Society of America, 96(1), 69–79. doi:10.1785/0120040206.
Tkalčić, H., Dreger, D. S., Foulger, G. R., & Julian, B. R. (2009). The puzzle of the 1996 Bárdarbunga, Iceland, earthquake: no volumetric component in the source mechanism. Bulletin of the Seismological Society of America, 99(5), 3077–3085.
Vavryčuk, V. (2001). Inversion for parameters of tensile earthquakes. Journal of Geophysical Research: Solid Earth, 106(B8), 16339–16355.
Vavryčuk, V. (2011). Detection of high-frequency tensile vibrations of a fault during shear rupturing: observations from the 2008 West Bohemia swarm. Geophysical Journal International, 186(3), 1404–1414.
Walter, F., Clinton, J. F., Deichman, N., Dreger, D. S., Minson, S. E., & Funk, M. (2009). Moment tensor inversions of icequakes on Gornergletscher, Switzerland. Bulletin of Seismological Society of America, 99(2A), 852–870.
Wang, C. Y., & Herrmann, R. B. (1980). A numerical study of P-, SV-, and SH-wave generation in a plane layered medium. Bulletin of Seismological Society of America, 70, 1015–1036.
Zhao, P., Oye, V., Kühn, D., & Cesca, S. (2014). Evidence for tensile faulting deduced from full waveform moment tensor inversion during the stimulation in the Basel enhanced geothermal system. Geothermics. doi:10.1016/j.geothermics.2014.01.003 (in press).