Full-cell C/SiO2ǁNa3V2(PO4)3 high-performance Na-ion battery: diffusion kinetics and N/P optimization

Springer Science and Business Media LLC - Tập 130 Số 9 - 2024
Yen Nguyen Kim Chuong1, My Loan Phung Le1, Vu Tan Phat1, Mẫn Văn Trần2
1Applied Physical Chemistry Laboratory, VNUHCM-University of Science, Ho Chi Minh, Vietnam
2Department of Physical Chemistry, Faculty of Chemistry, VNUHCM-University of Science, Ho Chi Minh, Vietnam

Tóm tắt

Từ khóa


Tài liệu tham khảo

C. Pean, B. Daffos, B. Rotenberg, P. Levitz, M. Haefele, P.L. Taberna, P. Simon, Salanne Confinement, Desolvation, and Electrosorption effects on the Diffusion of ions in Nanoporous Carbon Electrodes. J. Am. Chem. Soc. 137(39), 12627–12632 (2015). https://doi.org/10.1021/jacs.5b07416

E. de la Llave, V. Borgel, K.J. Parka, J.Y. Hwang, Y.K. Suna, P. Hartmannb, F.F. Chesneaub, D. Aurbach, Comparison between Na-Ion and Li-Ion cells: understanding the critical role of the cathodes Stability and the Anodes pretreatment on the cells Behavior. ACS Appl. Mater. Interfaces. 8(3), 1867–1875 (2016). https://doi.org/10.1021/acsami.5b09835

Y. Jiang, X. Zhou, D. Li, X. Cheng, F. Liu, Y. Yu, Highly reversible na storage in Na3V2(PO4)3 by optimizing nanostructure and rational Surface Engineering. Adv. Energy Mater. 8(16), 1–7 (2018). https://doi.org/10.1002/aenm.201800068

H. Song, K.S. Eom, Overcoming the unfavorable kinetics of Na3V2(PO4)2F3//SnPx Full-Cell Sodium-Ion Batteries for High Specific Energy and energy efficiency. Adv. Funct. Mater. 30(31), 1–9 (2020). https://doi.org/10.1002/adfm.202003086

Y. Hana, N. Lina, T. Xua, T. Lia, J. Tianb, Y. Zhu, Y. Qian, An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries. Nanoscale. 10(7), 3153–3158 (2018). https://doi.org/10.1039/c7nr08886h

V.T. Phat, C.T.M. Thu, N.T. Trung, L.M.L. Phung, W. Kaveevivitchai, T. Van Man, Structure and electrochemical properties of surface-activated C/SiO2 composite derived from rice husks as a high-performance anode for sodium-ion batteries. Int. J. Energy Res. 1–12 (2022). https://doi.org/10.1002/er.8750

Z. Song, K. Zou, X. Xiao, X. Deng, S. Li, H. Hou, X. Lou, G. Zou, X. Ji, Pre-sodiation strategies for the Promotion of Sodium-Based Energy Storage Systems. Chem. - Eur. J. 27(65), 16082–16092 (2021). https://doi.org/10.1002/chem.202102433

T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad, M.I. Shahzad, Prospects in anode materials for sodium ion batteries - a review. Renew. Sustain. Energy Rev. 119, 109549 (2020). https://doi.org/10.1016/j.rser.2019.109549

V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low-cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j

Y. Pi, Z. Gan, M. Yan, C. Pei, H. Yu, Y. Ge, Insight into pre-sodiation in Na3V2(PO4)2F3/C@hard carbon full-cells for promoting the development of sodium-ion battery. Chem. Eng. J. 413, 127565 (2021). https://doi.org/10.1016/j.cej.2020.127565

R. Shanmugam, W. Lai, Study of Transport Properties and Interfacial Kinetics of Na2/3[Ni1/3MnxTi2/3–x]O2 (x = 0,1/3) as electrodes for Na-Ion batteries. J. Electrochem. Soc. 162(1), A8–A14 (2015). https://doi.org/10.1149/2.0201501jes

C.S. Kim, K.M. Jeong, K. Kim, C.W. Yi, Effects of capacity ratios between anode and cathode on electrochemical properties for lithium polymer batteries. Electrochim. Acta. 155, 431–436 (2015). https://doi.org/10.1016/j.electacta.2014.12.005

G. Mu, S. Agrawal, P. Sittisomwong, P. Bai, Impacts of negative to positive capacities ratios on the performance of next-generation lithium-ion batteries. Electrochim. Acta. 406, 139878 (2022). https://doi.org/10.1016/j.electacta.2022.139878

Z. Chen, L. Zhang, X. Wub, K. Song, B. Ren, T. Li, S. Zhang, Effect of N/P ratios on the performance of LiNi0.8Co0.15Al0.05O2||SiOx/Graphite lithium-ion batteries. J. Power Sources. 439, 227056 (2019). https://doi.org/10.1016/j.jpowsour.2019.227056

W.R. Bennett, Considerations for estimating electrode performance in Li-Ion cells, 2012 IEEE Energytech, Energytech 2012, pp. 1–5, 2012, https://doi.org/10.1109/EnergyTech.2012.6304635

M.A. Cabañero, N. Boaretto, M. Röder, J. Müller, J. Kallo, A. Latz, Direct determination of Diffusion coefficients in Commercial Li-Ion batteries. J. Electrochem. Soc. 165(5), A847–A855 (2018). https://doi.org/10.1149/2.0301805jes

A. Rudola, K. Saravanan, C.W. Mason, P. Balaya, Na2Ti3O7: an intercalation based anode for sodium-ion battery applications. J. Mater. Chem. A 1(7), 2653–2662 (2013). https://doi.org/10.1039/c2ta01057g

V.T. Phat, N.T.B. Nguyen, P.G. Thinh, T.T.K. Huynh, M. Van Tran, P.M.L. Le, Preparation of silica/carbon composite from rice husk and its electrochemical propertives as anode material in Li-ion batteries. VNUHCM J. Nat. Sci. 4(4), 767–775 (2020)

T.L. Pham, H.P. Le, M.L.P. Le, T.P. Vu, Preparation of nanoporous SiO2/C derived from rice husk as anode material in SiO2/C|| LiFePO4 full-cell through alkaline activation treatment. Adv. Nat. Sci. Nanosci. Nanotechnol. 14(3), 35007 (2023)

M. Ge, C. Cao, G.M. Biesold, C.D. Sewell, S.M. Hao, J. Huang, W. Zhang, Y. Lai, Z. Lin, Recent advances in Silicon-based electrodes: from Fundamental Research toward practical applications, 2004577, pp. 1–42, 2021, https://doi.org/10.1002/adma.202004577

N.T.B. Nguyen, H. Van Nguyen, N.T. Tran, P.T. Vu, P.M.L. Le, M. Van Tran, Eco-friendly Aqueous Binder-based LiNi0.4Mn1.6O4 cathode enabling stable Cycling performance of high voltage Lithium-ion batteries with Biomass-Derived Silica. Electron. Mater. Lett. 19(3), 239–250 (2023). https://doi.org/10.1007/s13391-022-00393-1

L. Xiao, Y. Cao, W.A. Henderson, M.L. Sushko, Y. Shao, J. Xiao, W. Wang, M.H. Engelhard, Z. Niec, J. Liu, Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy. 19, 279–288 (2016). https://doi.org/10.1016/j.nanoen.2015.10.034

C. Zhan, Z. Lan, W. Xiangkun, S. Kaifang, R. Baozeng, L. Tao, Z. Suojiang, Microcircuits of functionally identified neurons in the rat medial entorhinal cortex. Neuron. 70(4), 773–786 (2011). https://doi.org/10.1016/j.neuron.2011.04.003

Y. Guan, J. Shen, X. Wei, Q. Zhu, X. Zheng, S. Zhou, B. Xu, High-rate performance of a three-dimensional LiFePO4/graphene composite as cathode material for Li-ion batteries. Appl. Surf. Sci. 481, 1459–1465 (2019). https://doi.org/10.1016/j.apsusc.2019.03.213

H.S. Magar, R.Y.A. Hassan, A. Mulchandani, Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications. Sensors. 21(19) (2021). https://doi.org/10.3390/s21196578

T.S. Ong, H. Yang, Symmetrical cell for electrochemical AC impedance studies of lithium intercalation into graphite. Electrochem. Solid-State Lett. 4(7), 89–92 (2001). https://doi.org/10.1149/1.1373377

W. Weppner, R.A. Huggins, Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and application to the System Li3Sb. J. Electrochem. Soc. 124(10), 1569–1578 (1977). https://doi.org/10.1149/1.2133112

E. Allcorn, S.O. Kim, A. Manthiram, Lithium diffusivity in antimony-based intermetallic and FeSb-TiC composite anodes as measured by GITT. Phys. Chem. Chem. Phys. 17(43), 28837–28843 (2015). https://doi.org/10.1039/c5cp04023j

H. Li, Y. Bai, F. Wu, Q. Ni, C. Wu, Na3V2(PO4)3/C nanorods as advanced cathode material for sodium ion batteries. Solid State Ionics. 278, 281–286 (2015). https://doi.org/10.1016/j.ssi.2015.06.026

B. Li, J. Liu, X. Xiu, G. Yang, K. Zhu, Insights into the charge storage mechanism of Na3V2(PO4)3 cathode in sodium-ion batteries. Bull. Mater. Sci. 46(2), 97 (2023). https://doi.org/10.1007/s12034-023-02937-z

J. James Abraham, B. Moossa, H.A. Tariq, R. Kahraman, S. Al-Qaradawi, R.A. Shakoor, Electrochemical performance of Na3V2(PO4)2F3 electrode material in a symmetric cell. Int. J. Mol. Sci. 22(21), 12045 (2021)

H.B. Huanga, S.H. Luo, C.L. Liu, Y. Yange, Y.C. Zhaib, L.J. Chang, M.Q. Li, Double-carbon coated Na3V2(PO4)3 as a superior cathode material for Na-ion batteries, Appl. Surf. Sci, vol. 487, no. April, pp. 1159–1166, 2019, https://doi.org/10.1016/j.apsusc.2019.05.224

M. Chandra, T.S. Khan, R. Shukla, S. Ahamed, A. Gupta, S. Basu, M. Ali Haider, R.S. Dhaka, Diffusion coefficient and electrochemical performance of NaVO3 anode in Li/Na batteries, Electrochim. Acta, vol. 331, no. xxxx, p. 135293, 2020, https://doi.org/10.1016/j.electacta.2019.135293

C. Zhan, Z. Lan, W. Xiangkun, S. Kaifang, R. Baozeng, L. Tao, Z. Suojiang, Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ionics. 180, 2–3 (2009). https://doi.org/10.1016/j.ssi.2008.12.015

B. Cao, H. Liu, B. Xu, Y. Lei, X. Chen, H. Song, Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. J. Mater. Chem. A 4(17), 6472–6478 (2016). https://doi.org/10.1039/c6ta00950f

C. Dejian, Z. Xiuqing, H. Huanying, L. Zhenghui, C. Jun, M. Lei, Y. Xiaoji, Z. Haiyan, Electrochemical storage mechanism of sodium in carbon materials: a study from soft carbon to hard carbon. Carbon N Y. 182, 758–769 (2021). https://doi.org/10.1016/j.carbon.2021.06.066

D.A. Stevens, J.R. Dahn, The mechanisms of Lithium and sodium insertion in Carbon materials. J. Electrochem. Soc. 148(8) (2001). https://doi.org/10.1149/1.1379565

Y. Fang, L. Xiao, X. Ai, Y. Cao, H. Yang, Hierarchical Carbon Framework wrapped Na3V2(PO4)3 as a Superior High-Rate and Extended Lifespan Cathode for Sodium-Ion batteries. Adv. Mater. 2, 5895–5900 (2015). https://doi.org/10.1002/adma.201502018

Y. Abe, S. Kumagai, Effect of negative/positive capacity ratio on the rate and cycling performances of LiFePO4/graphite lithium-ion batteries, J. Energy Storage, vol. 19, no. February, pp. 96–102, 2018, https://doi.org/10.1016/j.est.2018.07.012

D.R. Kumar, I. Kanagaraj, G. Dhakal, A.S. Prakash, J.J. Shim, Palmyra Palm tree biomass-derived carbon low-voltage plateau region capacity on Na-ion battery and its full-cell performance. J. Environ. Chem. Eng. 9(4), 105698 (2021). https://doi.org/10.1016/j.jece.2021.105698

X. Huang et al., Cyclic voltammetry in Lithium–sulfur batteries—challenges and opportunities. Energy Technol. 7(8) (2019). https://doi.org/10.1002/ente.201801001

M. Lu, Y. Huang, C. Chen, Cedarwood bark-derived hard Carbon as an Anode for High-Performance Sodium-Ion batteries. Energy Fuels. 34(9), 11489–11497 (2020). https://doi.org/10.1021/acs.energyfuels.0c01841

L.A. Middlemiss, A.J.R. Rennie, R. Sayers, A.R. West, Characterisation of batteries by electrochemical impedance spectroscopy. Energy Rep. 6, 232–241 (2020). https://doi.org/10.1016/j.egyr.2020.03.029