Full Parameterisation Matters for the Best Performance of Crop Models: Inter-comparison of a Simple and a Detailed Maize Model

Ahmad M. Manschadi1, Josef Eitzinger2, M. Breisch1, Werner Fuchs1, Thomas Neubauer3, Afshin Soltani4
1Department of Crop Sciences, Institute of Agronomy, BOKU University, Vienna, Austria
2Department of Water-Atmosphere-Environment, Institute of Meteorology and Climatology, BOKU University, Vienna, Austria
3Institute of Information Systems Engineering, Vienna University of Technology, Vienna, Austria
4Agronomy Group, Gorgan University of Agricultural Sciences and Natural Resources, Gorgān, Iran

Tóm tắt

AbstractProcess-based crop growth models have become indispensable tools for investigating the effects of genetic, management, and environmental factors on crop productivity. One source of uncertainty in crop model predictions is model parameterization, i.e. estimating the values of model input parameters, which is carried out very differently by crop modellers. One simple (SSM-iCrop) and one detailed (APSIM) maize (Zea mays L.) model were partially or fully parameterized using observed data from a 2-year field experiment conducted in 2016 and 2017 at the UFT (Universitäts- und Forschungszentrum Tulln, BOKU) in Austria. Model initialisation was identical for both models based on field measurements. Partial parameterization (ParLevel_1) was first performed by estimating only those parameters related to crop phenology. Full parameterization (ParLevel_2) was then conducted by estimating parameters related to phenology plus those affecting dry mass production and partitioning, nitrogen uptake, and grain yield formation. With ParLevel_1, both models failed to provide accurate estimation of LAI, dry mass accumulation, nitrogen uptake and grain yield, but the performance of APSIM was generally better than SSM-iCrop. Full parameterization greatly improved the performance of both crop models, but it was more effective for the simple model, so that SSM-iCrop was equally well or even better compared to APSIM. It was concluded that full parameterization is indispensable for improving the accuracy of crop model predictions regardless whether they are simple or detailed. Simple models seem to be more vulnerable to incomplete parameterization, but they better respond to full parameterization. This needs confirmation by further research.

Từ khóa


Tài liệu tham khảo

Adam, M., van Bussel, L. G. J., Leffelaar, P. A., van Keulen, H., & Ewert, F. (2011). Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions. Ecological Modelling, 222, 131–143.

Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., et al. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 3(9), 827–832.

Bassu, S., Brisson, N., Durand, J.-L., Boote, K., Lizaso, J., Jones, J. W., et al. (2014). How do various maize crop models vary in their responses to climate change factors? Global Change Biology, 20(7), 2301–2320.

Battisti, R., Sentelhas, P. C., & Boote, K. J. (2017). Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil. Field Crop Research, 200, 28–37.

Bell, M. A., & Fischer, R. A. (1994). Using yield prediction models to assess yield gains: A case study for wheat. Field Crop Research, 36, 161–166.

BMLFUW. (2017). Richtlinie für die sachgerechte Düngung im Ackerbau und Grünland Bundesministerium für Land- und Forstwirtschaft. Vienna: Umwelt und Wasserwirtschaft.

Chenu, K., van Oosterom, E. J., McLean, G., Deifel, K. S., Fletcher, A., Geetika, G., et al. (2018). Integrating modelling and phenotyping approaches to identify and screen complex traits: Transpiration efficiency in cereals. Journal of Experimental Botany, 69(13), 3181–3194.

Confalonieri, R., Bregaglio, S., & Acutis, M. (2016). Quantifying uncertainty in crop model predictions due to the uncertainty in the observations used for calibration. Ecological Modelling, 328, 72–77.

Dalgliesh, N. P., & Foale, M. A. (1998). Soil matters: Monitoring soil water and nitrogen in dryland farming agricultural production systems research unit (p. 122). Toowoomba: CSIRO.

Dalla Marta, A., Eitzinger, J., Kersebaum, K. C., Todorovic, M., & Altobelli, F. (2018). Assessment and monitoring of crop water use and productivity in response to climate change. Journal of Agricultural Science, 156(5), 575–576.

Devkota, K. P., Manschadi, A. M., Devkota, M., Lamers, J. P. A., Ruzibaev, E., Egamberdiev, O., et al. (2013). Simulating the impact of climate change on rice phenology and grain yield in irrigated drylands of Central Asia. Journal of Applied Meteorology and Climatology, 52, 2033–2050.

Ebrahimi, E., Manschadi, A. M., Neugschwandtner, R. W., Eitzinger, J., Thaler, S., & Kaul, H.-P. (2016). Assessing the impact of climate change on crop management in winter wheat: A case study for Eastern Austria. Journal of Agricultural Science, 154(7), 1153–1170.

Eitzinger, J., Thaler, S., Schmid, E., Strauss, F., Ferrise, R., Moriondo, M., et al. (2013b). Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. Journal of Agricultural Science, 151, 813–835.

Eitzinger, J., Trnka, M., Semerádo, D., Thaler, S., Svobodová, E., Hlavinka, P., et al. (2013a). Regional climate change impacts on 33 agricultural crop production in Central and Eastern Europe: Hotspots, regional differences and 34 common trends. Journal of Agricultural Science, 151(6), 787–812.

Ewert, F., Rötter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., et al. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling & Software, 72, 287–303.

Ghanem, M. E., Marrou, H., Biradar, C., & Sinclair, T. R. (2015). Production potential of lentil (Lens culinaris Medik.) in East Africa. Agricultural Systems, 137, 24–38.

Gobin, A., Kersebaum, K. C., Eitzinger, J., Trnka, M., Hlavinka, P., Takac, J., et al. (2017). Variability in the water footprint of arable crop production across European Regions. Water, 9(2), 1–22.

Goudriaan, J. (1996). Predicting crop yields under global change. In B. H. Walker & W. Steffen (Eds.), Global change and terrestrial ecosystems. Cambridge: Cambridge University Press.

Grassini, P., van Bussel, L. G. J., van Warta, J., Wolf, J., Claessens, L., Yanga, H., et al. (2015). How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research, 177, 49–63.

Hammer, G., Messina, C., Wu, A., & Cooper, M. (2019). Biological reality and parsimony in crop models—why we need both in crop improvement! In Silico Plants. https://doi.org/10.1093/insilicoplants/diz010.

Hammer, G. L., van Oosterom, E., McLean, G., Chapman, S. C., Broad, I., Harland, P., et al. (2010). Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany, 61(8), 2185–2202.

He, D., Wang, E., Wang, J., & Robertson, M. J. (2017). Data requirement for effective calibration of process-based crop models. Agricultural and Forest Meteorology, 234–235, 136–148.

Hochman, Z., Rees, H., Carberry, P. S., Hunt, J. R., McCown, R. L., Gartmann, A., et al. (2009). Re-inventing model-based decision support with Australian dryland farmers. 4. Yield Prophet® helps farmers monitor and manage crops in a variable climate. Crop & Pasture Science, 60, 1057–1070.

Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., et al. (2014). APSIM: Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327–350.

Huth, N. I., Thorburn, P. J., Radford, B. J., & Thornton, C. M. (2010). Impacts of fertilisers and legumes on N2O and CO2 emissions from soils in subtropical agricultural systems: A simulation study. Agriculture, Ecosystems & Environment, 136(3–4), 351–357.

Kiniry, J. R. (1991). Maize phasic development. In J. Hanks & J. T. Ritchie (Eds.), Modeling plant and soil systems (Chapter 4) (pp. 55–70). Madison: American Society of Agronomy.

Knutti, R., & Sedlácek, J. (2013). Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 3, 369–373.

Lobell, D. B., Hammer, G. L., Chenu, K., Zheng, B., McLean, G., & Chapman, S. C. (2015). The shifting influence of drought and heat stress for crops in Northeast Australia. Global Change Biology, 21, 4115–4127.

Manschadi, A. M., Christopher, J., deVoil, P., & Hammer, G. L. (2006). The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology, 33, 823–837.

Manschadi, A. M., Kaul, H.-K., Vollmann, J., Eitzinger, J., & Wenzel, W. (2014). Developing phosphorus-efficient crop varieties—An interdisciplinary research framework. Field Crops Research, 162, 87–98.

Meier, U. (2001). Growth stages of mono- and dicotyledonous plants: BBCH Monograph (2nd ed.). Bonn: Federal Biological Research Centre for Agriculture and Forestry.

Messina, C. D., Sinclair, T. R., Hammer, G. L., Curan, D., Thompson, J., Oler, Z., et al. (2015). Limited-transpiration trait may increase maize drought tolerance in the US Corn Belt. Agronomy Journal, 107(6), 1978–1986.

Moeller, C., Pala, M., Manschadi, A. M., Meinke, H., & Sauerborn, J. (2007). Assessing the sustainability of wheat-based cropping systems using APSIM: Model parameterisation and evaluation. Australian Journal of Agricultural Research, 58, 75–86.

Moeller, C., Sauerborn, J., de Voil, P., Manschadi, A. M., Pala, M., & Meinke, H. (2013). Assessing the sustainability of wheat-based cropping systems using simulation modelling: Sustainability = 42? Sustainability Science, 9(1), 1–16.

Palosuo, T., Kersebaum, K. C., Angulo, C., Hlavinka, P., Mirschel, W., Moriondo, M., et al. (2011). Simulation of winter wheat yields and yield variability in different climates of Europe: A comparison of eight crop growth models. European Journal of Agronomy, 35, 103–114.

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Muller, C., Arneth, A., et al. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111, 3268–3273.

Rötter, R. P., Carter, T. R., Olesen, J. E., & Porter, J. R. (2011). Crop–climate models need an overhaul. Nature Climate Change, 1, 175–177.

Rötter, R. P., Palosuo, T., Kersebaum, K. C., Angulo, C., Bindi, M., Ewert, F., et al. (2012). Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Research, 133, 23–36.

Salo, T., Palosuo, T., Kersebaum, K., Nendel, C., Angulo, C., Ewert, F., et al. (2016). Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. The Journal of Agricultural Science, 154(7), 1218–1240.

SAS-Institute. (2008). SAS 92 Copyright 2002–2008. Cary: SAS Institute Inc.

Seidel, S. J., Palosuo, T., Thorburn, P., & Wallach, D. (2018). Towards improved calibration of crop models: Where are we now and where should we go? European Journal of Agronomy, 94, 25–35.

Sinclair, T. R. (1986). Water and nitrogen limitations in soybean grain production I. Model development. Field Crops Research, 15(2), 125–141.

Sinclair, T. R., & Muchow, R. C. (1995). Effect of nitrogen supply on maize yield: I. Modeling physiological responses. Agronomy Journal, 87(4), 632–641.

Sinclair, T. L., & Seligman, G. (1996). Crop modeling: From infancy to maturity. Agronomy Journal, 88(5), 698–704.

Sinclair, T. R., & Seligman, N. (2000). Criteria for publishing papers on crop modeling. Field Crops Research, 68, 165–172.

Sinclair, T. R., Soltani, A., Marrou, H., Ghanem, M., & Vadez, V. (2020). Geospatial assessment for crop genetic and management improvements. Crop Science. https://doi.org/10.1002/csc2.20106.

Soltani, A., Maddah, V., & Sinclair, T. R. (2013). SSM-Wheat: A simulation model for wheat development, growth and yield. International Journal of Plant Production, 7(4), 711–740.

Soltani, A., & Sinclair, T. R. (2012). Modeling physiology of crop development, growth and yield. Wallingford: CABI.

Soltani, A., & Sinclair, T. R. (2015). A comparison of four wheat models with respect to robustness and transparency: Simulation in a temperate, sub-humid environment. Field Crops Research, 175, 37–46.

Soufizadeh, S., Munaro, E., McLean, G., Massigna, E., van Oosterom, E. J., Chapman, S. C., et al. (2018). Modelling the nitrogen dynamics of maize crops: Enhancing the APSIM maize model. European Journal of Agronomy, 100, 118–131.

StClair, S. B., & Lynch, J. P. (2010). The opening of Pandora’s Box: Climate change impacts on soil fertility and crop nutrition in developing countries. Plant and Soil, 335, 101–115.

Tang, J., Wang, J., Fang, Q., Wang, E., Yin, H., & Pan, X. (2018). Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in North China. European Journal of Agronomy, 98, 82–94.

Tenorio, F. A. M., Eagle, A. J., McLellan, E. L., Cassman, K. G., Howard, R., Below, F. E., et al. (2019). Assessing variation in maize grain nitrogen concentration and its implications for estimating nitrogen balance in the US North Central region. Field Crops Research, 240, 185–193.

Thaler, S., Eitzinger, J., Trnka, M., & Dubrovsky, M. (2012). Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. Journal of Agricultural Science, 150(05), 537–555.

Van der Velde, M., & Nisini, L. (2018). Performance of the MARS-crop yield forecasting system for the European Union: Assessing accuracy, in-season, and year-to-year improvements from 1993 to 2015. Agricultural Systems, 168, 224–230.

Van Ittersum, M. K., Leffelaar, P. A., van Keulen, H., Kropff, M. J., Bastiaans, L., & Goudriaan, J. (2003). On approaches and applications of the Wageningen crop model. European Journal of Agronomy, 18, 201–234.

van Oosterom, E. J., Borrell, A. K., Chapman, S. C., Broad, I. J., & Hammer, G. L. (2010). Functional dynamics of the nitrogen balance of sorghum: I N demand of vegetative plant parts. Field Crops Research, 115, 19–28.

Wallach, D., Buis, S., Lecharpentier, P., Bourges, J., Clastre, P., Launay, M., et al. (2011). A package of parameter estimation methods and implementation for the STICS crop-soil model. Environmental Modelling & Software, 26, 386–394.

White, J. W., Hoogenboom, G., Kimbal, B. A., & Wall, G. W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124, 357–368.

Wu, A., Hammer, G. L., Doherty, A., von Caemmerer, S., & Farquhar, G. D. (2019). Quantifying impacts of enhancing photosynthesis on crop yield. Nature Plants, 5, 380–388.

Zhao, C., Liu, B., Xiao, L., Hoogenboom, G., Boote, K. J., Kassie, B. T., et al. (2019). A SIMPLE crop model. European Journal of Agronomy, 104, 97–106.