Full Measure Reducibility for Generic One-parameter Family of Quasi-periodic Linear Systems

Springer Science and Business Media LLC - Tập 20 Số 4 - Trang 831-866 - 2008
Hai-Long Her1, Jiangong You1
1Department of Mathematics, Nanjing University, Nanjing 210093, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bogoljubov N.N., Mitropolski Ju.A., Samoilenko A.M.: Methods of Accelerated Convergence in Nonlinear Mechanics. Springer-Verlag, New York (1976)

Coppel W.A.: Pseudo-autonomous linear equation. Bull. Austral. Math. Soc. 16, 61–65 (1977)

Dinaburg E.I., Sinai Y.G.: The one dimensional Schrödinger equation with a quasi-periodic potential. Funkt. Anal. i. Priloz 9, 8–21 (1975)

Eliasson L.H.: Floquet solutions for the one-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146, 447–482 (1992)

Eliasson L.H.: Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Math. 179, 153–196 (1997)

Eliasson, L.H.: Almost reducibility of linear quasi-periodic systems. In: Smooth Ergodic Theory and its Applications (Seattle, WA, 1999). Proc. Sympos. Pure Math., vol. 69, pp. 679–705. Amer. Math. Soc., Providence, RI (2001)

He H.L., You J.G.: An improved result for positive measure reducibility of quasi-periodic linear systems. Acta Math. Sin. (Engl. Ser.) 22(1), 77–86 (2006)

Johnson R.A., Moser J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84, 403–438 (1982)

Johnson R.A., Sell G.R.: Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems. J. Diff. Eqn. 41, 262–288 (1981)

Jorba A., Simó C.: On the reducibility of linear differntial equations with quasi-periodic coefficients. J. Diff. Eq. 98, 111–124 (1992)

Kato T.: Perturbation Theory for Linear Operator. Springer-Verlag, New York Inc (1966)

Krikorian R.: Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts (French) [Reducibility of compact-group-valued skew-product systems]. Astérisque 259, 1–216 (1999)

Krikorian R.: Réductibilité presque partout des flots fibrés quasi-périodiques á valeurs dans des groups compacts. Ann. Sci. École. Norm. Sup. 32, 187–240 (1999)

Krikorian R.: Global density of reducible quasi-periodic cocycles on $${\mathbb{T}^{1} \times SU(2)}$$ . Ann. Math. 154, 269–326 (2001)

Lancaster P.: Theory of Matrices. Academic Press, NewYork and London (1969)

Moser J., Pöschel J.: An extension of a result by Dinaburg and Sinai on quasi-periodic potentials. Comment. Math. Helvetici. 59, 39–85 (1984)

Rüssmann H.: On the one dimensional Schrödinger equation with a quasi-periodic potential. Annal. NY Acad. Sci. 357, 90–107 (1980)

Rychlik M.: Renormalization of cocycles and linaer ODE with almost-periodic coefficients. Invent. Math. 110(1), 173–206 (1992)

You J.: Perturbations of lower dimensional tori for Hamiltonian systems. J. Diff. Eq. 152, 1–29 (1999)