Full‐Color Inorganic Carbon Dot Phosphors for White‐Light‐Emitting Diodes

Advanced Optical Materials - Tập 5 Số 19 - 2017
Zhen Tian1,2, Xutao Zhang1,2, Di Li1, Ding Zhou1, Pengtao Jing1, Dezhen Shen1, Songnan Qu1, Radek Zbořil3, Andrey L. Rogach4
1State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2University of Chinese Academy of Sciences, Beijing, 100049, China
3Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, 78371 Czech Republic
4Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, 999077 Hong Kong SAR, China

Tóm tắt

Light‐emitting carbon dots (CDots) are widely investigated due to their distinct merits. However, it is still a challenge to modulate their bandgap emissions and conquer their aggregation‐induced luminescence quenching to achieve full‐color highly emissive CDot‐based phosphors. Herein, this study proposes an approach toward realization of full‐color emissive CDots from two common precursors, citric acid and urea, through employing three different solvents (water, glycerol, and dimethylformamide) and their combinations in a solvothermal synthesis. Employing sodium silicate solution, this study further demonstrates the microwave‐assisted method allowing to incorporate CDots into a silica network, which effectively prevents aggregation of CDots and results in strongly luminescent full‐color inorganic CDot phosphors with photoluminescence quantum yields of 30–40%. Through deposition of the red‐ and green‐emitting CDot phosphors on blue‐emitting InGaN chips, white‐light‐emitting diodes are fabricated with Commission Internationale de L'Eclairage of (0.34, 0.31) and the color rendering index of 82.4, indicating their promising application for solid‐state lighting.

Từ khóa


Tài liệu tham khảo

10.1016/j.mattod.2013.10.020

10.1016/j.nantod.2014.09.004

10.1021/ja062677d

10.1021/nl400368v

10.1016/j.bios.2014.04.046

10.1002/adfm.201303441

10.1002/adma.201602581

10.1002/adfm.201203771

10.1021/nl504038s

10.1021/nl500608w

10.1021/nl404281h

10.1002/adfm.201501250

10.1364/OE.24.00A312

10.1002/adom.201200020

10.1039/C4CS00269E

10.1016/j.nantod.2016.08.006

10.1039/C5TC00813A

10.1016/j.nantod.2015.09.002

10.1038/lsa.2016.120

10.1002/adma.201300233

10.1002/anie.201200474

10.1002/adma.201600616

10.1039/C4TC01191K

10.1021/acs.nanolett.5b02215

10.1002/adma.201600058

10.1002/anie.201411004

10.1021/acsnano.5b05406

10.1002/adma.201405070

10.1002/adma.201604436

10.1039/C4NR04034A

10.1039/C5NR03014E

10.1002/anie.201206791

10.1038/srep04976

10.1002/adma.201503380

10.1039/C4CC09589H

10.1002/adma.201504891

10.1002/smll.201602055

10.1021/acs.chemmater.6b05375

10.1038/lsa.2016.24

10.1002/adma.201305299

10.1038/lsa.2015.137

10.1002/adma.201200164

10.1021/nn304675g

10.1039/B713677C

10.1016/j.matdes.2015.09.078