Full Atomistic Simulation of Cross-Linked Gold Nanoparticle Assemblies
Tóm tắt
Từ khóa
Tài liệu tham khảo
K.E. Mueggenburg et al., Elastic membranes of close-packed nanoparticle arrays. Nat. Mater. 6(9), 656–660 (2007)
J. He et al., Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes. Small 6(13), 1449–1456 (2010)
W. Cheng et al., Free-standing nanoparticle superlattice sheets controlled by DNA. Nat. Mater. 8(6), 519–525 (2009)
H. Schlicke et al., Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating. Nanotechnology 22(30), 305303 (2011)
J. Herrmann et al., Nanoparticle films as sensitive strain gauges. Appl. Phys. Lett. 91(18), 183105 (2007)
N. Olichwer et al., Cross-linked gold nanoparticles on polyethylene: resistive responses to tensile strain and vapors. ACS Appl. Mater. Interfaces 4(11), 6151–6161 (2012)
M. Segev-Bar et al., Tunable touch sensor and combined sensing platform: toward nanoparticle-based electronic skin. ACS Appl. Mater. Interfaces 5(12), 5531–5541 (2013)
H. Schlicke et al., Cross-linked gold-nanoparticle membrane resonators as microelectromechanical vapor sensors. ACS Sens. 2(4), 540–546 (2017)
Y. Wang et al., Fracture and failure of nanoparticle monolayers and multilayers. Nano Lett. 14(2), 826–830 (2014)
Y. Joseph et al., Self-assembled gold nanoparticle/alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties. J. Phys. Chem. B 107(30), 7406–7413 (2003)
H. Schlicke et al., Elastic and viscoelastic properties of cross-linked gold nanoparticles probed by AFM bulge tests. J. Phys. Chem. C 118(8), 4386–4395 (2014)
H. Schlicke et al., Tuning the elasticity of cross-linked gold nanoparticle assemblies. J. Phys. Chem. C 123(31), 19165–19174 (2019)
M. Gauvin et al., Electro-mechanical sensing in freestanding monolayered gold nanoparticle membranes. Nanoscale 8(22), 11363–11370 (2016)
P. Podsiadlo et al., The role of order, nanocrystal size, and capping ligands in the collective mechanical response of three-dimensional nanocrystal solids. J. Am. Chem. Soc. 132(26), 8953–8960 (2010)
M. Gauvin et al., Mechanical properties of Au supracrystals tuned by flexible ligand interactions. J. Phys. Chem. C 118(9), 5005–5012 (2014)
S. Srivastava et al., Two-dimensional DNA-programmable assembly of nanoparticles at liquid interfaces. J. Am. Chem. Soc. 136(23), 8323–8332 (2014)
W.D. Luedtke, U. Landman, Structure and thermodynamics of self-assembled monolayers on gold nanocrystallites. J. Phys. Chem. B 102(34), 6566–6572 (1998)
W. Luedtke, U. Landman, Structure, dynamics, and thermodynamics of passivated gold nanocrystallites and their assemblies. J. Phys. Chem. 100(32), 13323–13329 (1996)
P.K. Ghorai, S.C. Glotzer, Molecular dynamics simulation study of self-assembled monolayers of alkanethiol surfactants on spherical gold nanoparticles. J. Phys. Chem. C 111(43), 15857–15862 (2007)
X. Liu, P. Lu, H. Zhai, Ligand coverage dependence of structural stability and interparticle spacing of gold supracrystals. J. Appl. Phys. 123(4), 045101 (2018)
I. Srivastava et al., Mechanics of gold nanoparticle superlattices at high hydrostatic pressures. J. Phys. Chem. C 123(28), 17530–17538 (2019)
X.P. Liu, Y. Ni, L.H. He, Elastic properties of gold supracrystals: effects of nanocrystal size, ligand length, and nanocrystallinity. J. Chem. Phys. 144(14), 144507 (2016)
X.P. Liu, Y. Ni, L.H. He, Molecular dynamics simulation of interparticle spacing and many-body effect in gold supracrystals. Nanotechnology 27(13), 135707 (2016)
U. Landman, W.D. Luedtke, Small is different: energetic, structural, thermal, and mechanical properties of passivated nanocluster assemblies. Faraday Discuss 125, 1–22 (2004). ((discussion 99–116))
K.M. Salerno et al., High strength, molecularly thin nanoparticle membranes. Phys. Rev. Lett. 113(25), 258301 (2014)
K.M. Salerno et al., Ligand structure and mechanical properties of single-nanoparticle-thick membranes. Phys. Rev. E Stat. Nonlinear Soft. Matter. Phys. 91(6), 062403 (2015)
K.M. Salerno, G.S. Grest, Temperature effects on nanostructure and mechanical properties of single-nanoparticle thick membranes. Faraday Discuss 181, 339–354 (2015)
W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996)
S. Foiles, M. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33(12), 7983 (1986)
X. Zhao, Y. Leng, P.T. Cummings, Self-assembly of 1, 4-benzenedithiolate/tetrahydrofuran on a gold surface: a Monte Carlo simulation study. Langmuir 22(9), 4116–4124 (2006)
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)
A.S. Barnard, X. Lin, L.A. Curtiss, Equilibrium morphology of face-centered cubic gold nanoparticles> 3 nm and the shape changes induced by temperature. J. Phys. Chem. B 109(51), 24465–24472 (2005)
R. Huang et al., Single-crystalline and multiple-twinned gold nanoparticles: an atomistic perspective on structural and thermal stabilities. RSC Adv. 4(15), 7528–7537 (2014)
T. Djebaili et al., Atomistic simulations of the surface coverage of large gold nanocrystals. J. Phys. Chem. C 117(34), 17791–17800 (2013)