Fujian cypress and two other threatened tree species in three conservation zones of a nature reserve in north-western Vietnam
Tóm tắt
Fujian cypress (Fokienia hodginsii) is a highly valued but endangered tree species. The Ta Xua Nature Reserve in Vietnam is one of its main conservation centers. This nature reserve consists of a fully protected core zone, a buffer zone in which low intensity forest use is permitted, and a forest restoration zone in which forest regenerates after shifting cultivation. The community and population status of F. hodginsii and two other threatened tree species (Aglaia spectabilis and Quercus platycalyx) were assessed across the three conservation zones. Based on 120 random sample plots of 400 m2, we applied adaptive cluster sampling for trees with a diameter at breast height (DBH) of at least 6 cm. In addition, tree regeneration (DBH < 6 cm) was assessed. In the core zone, F. hodginsii, A. spectabilis and Q. platycalyx occurred at moderate densities (4.9, 5.1 and 4.4 trees∙ha−1, respectively). F. hodginsii and A. spectabilis were however much less abundant in the buffer and restoration zones. In contrast, Q. platycalyx had its highest density in the restoration zone. Regeneration of all three target species occurred in the core zone; however, there were only a few regenerating trees of F. hodginsii and A. spectabilis in the buffer and regeneration zones. Regeneration of F. hodginsii and A. spectabilis was mostly in the vicinity of conspecific adult trees.
F. hodginsii and A. spectabilis were mostly confined to the core zone, and regeneration of these species was rare in the buffer and restoration zones. For these two species, the core zone was the most important refuge, so continued conservation of this zone is important for the preservation of these species. The results of this study in the Ta Xua Nature Reserve do not confirm the classification of Q. platycalyx as ‘vulnerable’ in the Vietnam Red List. Further forest monitoring including repeated population assessments is needed to evaluate the vulnerability of threatened tree species.
Tài liệu tham khảo
Bruner AG, Gullison RE, Rice RE, da Fonseca GAB (2001) Effectiveness of parks in protecting tropical biodiversity. Science 291:125–128. https://doi.org/10.1126/science.291.5501.125
Chape S, Harrison J, Spalding M, Lysenko I (2005) Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Phil Trans R Soc B 360(1454):443–455. https://doi.org/10.1098/rstb.2004.1592
Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35(4):445–453. https://doi.org/10.2307/1931034
Cochran WG (1977) Sampling techniques. Wiley, New York
Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K, Krishnadas M, Beckman N, Zhu Y (2014) Testing predictions of the Janzen–Connell hypothesis: a meta-analysis of experimental evidence for distance-and density-dependent seed and seedling survival. J Ecol 102(4):845–856. https://doi.org/10.1111/1365-2745.12232
Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer PJ, Gradwell GR (eds) Dynamics of populations, proceedings of the advanced study institute on dynamics of numbers in populations, Oosterbeek, 1970. Cent Agric Publ Doc, Wageningen, Netherlands, pp 298–312
Crawley MJ (2009) Plant–herbivore dynamics. In: Crawley MJ (ed) Plant Ecology, 2nd edn. Blackwell, London, p 401–474
Dang HP (2010) Determining ecological factors affecting the distribution and regeneration of Fokienia hodginsii in Chu Yang Sin National Park, Central Highlands of Vietnam. (master’s thesis). University of Tay Nguyen, Vietnam
Dao THH, Hölscher D (2015) Red-listed tree species abundance in montane forest areas with differing levels of statutory protection in north-western Vietnam. Trop Conserv Sci 8(2):479–490
Dao THH, Saborowski J, Hölscher D (2016) Patterns of tree community differences in the core and buffer zones of a nature reserve in north-western Vietnam. Glob Ecol Conserv 8:220–229. https://doi.org/10.1016/j.gecco.2016.09.011
DeFries R, Hansen A, Newton AC, Hansen MC (2005) Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol Appl 15(1):19–26. https://doi.org/10.1890/03-5258
Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Environ Resour 28:137–167. https://doi.org/10.1146/annurev.energy.28.050302.105532
Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57(1):1–32. https://doi.org/10.1007/BF02858763
Farjon A (2010) A Handbook of the World’s Conifers. Brill Academic Publishers, Leiden, p 983–985
Fearnside PM (1997) Protection of mahogany: a catalytic species in the destruction of rain forests in the American tropics. Environ Conserv 24(4):303–306
Forest Inventory and Planning Institute (FIPI) (2002) Project of conservation and development forest resources of Ta Xua Nature Reserve. Hanoi (Unpublished report)
Gaston KJ (1994). Rarity. New York: Springer Publishing. doi: 10.1007/978-94-011-0701-3
Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJ, Laurance WF, Lovejoy TE (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381. https://doi.org/10.1038/nature 10425
Hubbell SP (1979) Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203:1299–1309. https://doi.org/10.1126/science.203.4387.1299
Hubbell SP (2013) Tropical rain forest conservation and the twin challenges of diversity and rarity. Ecol Evol 3(10):3263–3274. https://doi.org/10.1002/ece3.705
Hubbell SP, Foster RB (1983) Diversity of canopy trees in a neotropical forest. In Tropical Rain Forest: Ecology and Management, Sutton SL, Whitmore TC, Chadwick AC (eds), 25-42. Br. Ecol. Soc., Spec. Publ. No. 2. Blackwell, Oxford
IUCN (2014) The IUCN Red List of Threatened Species. Version 2014.3. http://www.iucnredlist.org. Accessed 21 Nov 2014
Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528
Joppa LN, Pfaff A (2010) Global protected area impacts. Proc R Soc B. https://doi.org/10.1098/rspb.2010.1713
Lam HV, Yen HM (2013) Hoang Lien–Van Ban Nature Reserve. In: Evidence-based conservation: lessons from the lower Mekong. Earthscan, London
Laurance WF (1999) Reflections on the tropical deforestation crisis. Biol Conserv 91:109–117 doi: 10. 1016/S0006-3207(99)00088-9
Law No.29/2004/QH 11 (2004) Protection and development of forest, the National Assembly of the Socialist Republic of Vietnam
Le MC, Le TH (2000) Forest plants. Agricultural Publishing House, Hanoi
Lesueur D, Ban NK, Bighelli A, Muselli A, Casanova J (2006) Analysis of the root oil of Fokienia hodginsii (Dunn) Henry et Thomas (Cupressaceae) by GC, GC–MS and 13C-NMR. Flavour Frag J 21(1):171–174. https://doi.org/10.1002/ffj.1557
Luu NDT, Thomas PI (2004) Conifers of Vietnam: an illustrated field guide. World Publishing House, Hanoi
Nguyen DQ, Phan TPH, Dao VT (2015) Effect of storage time and pretreatment on seed germination of the threatened coniferous species Fokienia hodginsii. Plant Species Biol 30(4):291–296. https://doi.org/10.1111/1442-1984.12062
Nguyen HN (2000) Some threatened tree species of Vietnam. Agricultural Publishing House, Hanoi
Nguyen NC, Cao TC, Vu VC, Nguyen XD, Vu VD, Nguyen KD, Tran H, Tran TO, Nguyen BQ, Nguyen NT (1996) Vietnam forest trees. Agricultural Publishing House, Hanoi
Nguyen TB, Tran DL, Nguyen KK (2007) Vietnam red list. Part II: plants. Science and Techniques Publishing House, Hanoi
Osborn T (2004) Preparation and implementation of a strategy for the management of Fokienia hodginsii in Vietnam by 2008. A desk study for the Hoang Lien son project, Fauna and Flora International Vietnam
Paluch GE (2009) Characterization of botanical terpene activity in arthropods (Doctoral dissertation), Iowa State University, USA. Retrieved from http://lib.dr.iastate.edu/
Philippi T (2005) Adaptive cluster sampling for estimation of abundances within local populations of low-abundance plants. Ecology 86(5):1091–1100 http://www.jstor.org/stable/3450870
Plumptre AJ (1995) The importance of “seed trees” for the natural regeneration of selectively logged tropical forest. Commonwealth For Rev 74(3):253–258 http://www.jstor.org/stable/42608376
Sodhi NS, Koh LP, Brook BW, Ng PK (2004) Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol 19(12):654–660. https://doi.org/10.1016/j.tree.2004.09.006
Sodhi NS, Koh LP, Clements R, Wanger TC, Hill JK, Hamer KC, Clough Y, Tscharntke T, Posa MRC, Lee TM (2010) Conserving southeast Asian forest biodiversity in human-modified landscapes. Biol Conserv 143(10):2375–2384. https://doi.org/10.1016/j.biocon.2009.12.029
Sodhi NS, Lee TM, Koh LP, Brook BW (2009) A meta-analysis of the impact of anthropogenic Forest disturbance on Southeast Asia’s Biotas. Biotropica 41(1):103–109. https://doi.org/10.1111/j.1744-7429.2008.00460.x
ter Steege H, Pitman NC, Sabatier D, Baraloto C, Salomão RP, Guevara JE, Phillips OL, Castilho CV, Magnusson WE, Molino JF (2013) Hyperdominance in the Amazonian tree flora. Science 342:1243092. https://doi.org/10.1126/science.1243092
Thai VT (1998) Ecosystem of tropical forests in Vietnam. Science and Technique Publishing House, Hanoi
Thomas P, Yang Y (2013) Fokienia hodginsii. The IUCN Red List of Threatened Species 2013. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T32351A2815809.en
Thompson SK (1990) Adaptive cluster sampling. J Am Stat Assoc 85(412):1050–1059
Thompson SK, Seber GAF (1996) Adaptive sampling. Wiley, New York
Williams PH, Burgess ND, Rahbek C (2000) Flagship species, ecological complementarity and conserving the diversity of mammals and birds in sub-Saharan Africa. Anim Conserv 3(3):249–260
Wright JS (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130(1):1–14. https://doi.org/10.1007/s004420100809
