Fuchsian type equations and Fuchsian hyperbolic equations

Japanese Journal of Mathematics - Tập 5 Số 2 - Trang 245-347 - 1979
Hidetoshi Tahara1
1DEPARTMENT OF MATHMATICS FACULTY OF SCIENCE AND TECHNOLOGY SOPHIA UNIVERSITY

Tóm tắt

Từ khóa


Tài liệu tham khảo

[1] S. Alinhac, Problèmes de Cauchy pour des opérateurs singuliers, Bull. Soc. Math. France, 102 (1974), 289-315.

[2] M. S. Baouendi and C. Goulaouic, Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math., 26 (1973), 455-475.

[3] M. S. Baouendi and C. Goulaouic, Cauchy problems with multiple characteristics in spaces of regular distributions, Uspehi Mat. Nauk, 29-2 (1974), 70-76 (in Russian).

[4] J. M. Bony and P. Schapira, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Invent. Math., 17 (1972), 95-105.

[5] J. M. Bony and P. Schapira, Solutions hyperfonctions du problème de Cauchy, Lecture Notes in Math. No. 287, Springer, 1973, pp. 82-98.

[6] L. Boutet de Monvel and P. Kree, Pseudo-differential operators and Gevrey classes, Ann. Inst. Fourier, 17-1 (1967), 295-323.

[7] E. A. Coddington and N. Levinson, Theory of ordinary differential equations,. McGraw-Hill, New York, 1955.

[8] Y. Hasegawa, On the initial-value problems with data on a double characteristic, J. Math. Kyoto Univ., 11-2 (1971), 357-372.

[9] Y. Hasegawa, On the initial-value problems with data on a characteristic hypersurface, J. Math. Kyoto Univ., 13-3 (1973), 579-593.

[10] A. Kaneko, Singular spectrum of boundary values of solutions of partial differential equations with real analytic coefficients, Sci. Papers Coll. Gen. Ed. Univ. Tokyo, 25-2 (1975), 59-68.

[11] M. Kashiwara and T. Kawai, Micro-hyperbolic pseudo-differential operators I, J. Math. Soc. Japan, 27 (1975), 359-404.

[12] M. Kashiwara and T. Kawai, Micro-hyperbolic pseudo-differential operators, Lecture Notes in Math. No. 449, Springer, pp. 70-77.

[13] M. Kashiwara and T. Oshima, Systems of differential equations with regular singularities and their boundary value problems, Ann. of Math., 106 (1977), 145-200.

[14] H. Komatsu, A local version of Bochner's tube theorem, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 19 (1972), 201-214.

[15] H. Komatsu, and T. Kawai, Boundary values of hyperfunction solutions of linear partial differential equations, Publ. Res. Inst. Math. Sci., 7 (1971), 95-104.

[16] T. Miwa, On micro-analyticity of the elementary solutions of hyperbolic differential equations with real analytic coefficients, Proc. Japan Acad., 50 (1974), 271-272.

[17] T. Miwa, Propagation of micro-analyticity for solutions of pseudo-differential equations I, Publ. Res. Inst. Math. Sci., 10-2 (1975), 522-533.

[18] S. Mizohata, On Kowalewskian sysetms, Uspehi Mat. Nauk, 29-2 (1974), 216-227 (in Russian).

[19] T. Oshima, Singularities in contact geometry and degenerate pseudo-differential equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 21 (1974), 43-83.

[20] M. Sato and M. Kashiwara, The determinant of matrices of pseudo-differential operators, Proc. Japan Acad., 51-1 (1975), 17-19.

[21] M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations, Lecture Notes in Math. No. 287, Springer, 1973, pp. 265-529.

[22] Y. Tsuno, On the prolongation of local holomorphic solutions of partial differential equations, III, equations of the Fuchsian type, J. Math. Soc. Japan, 28 (1976), 611-616.

[23] L. R. Volevich, On general systems of differential equations, Dokl. Acad. Nauk SSSR, 132 (1960), 20-23 (in Russian).

[24] S. Delache and J. Leray, Calcul de la solution elémentaire de l'opérateur d'Euler- Poisson-Darboux et de l'opérateur de Tricomi-Clairaut, hyperbolique, d'order 2, Bull. Soc. Math. France, 99 (1971), 313-336.

[25] V. Kh. Froim, Linear scalar partial differential equations with regular singularities on a hypersurface, Differencial'nye Uravnenija, 9-3 (1973), 533-541 (in Russian).

[26] V. Kh. Froim, The representation of analytic solutions of certain partial differential equations with coefficients having pole-type singularities with respect tc one argument, Differencial'nye Uravnenija, 7-1 (1971), 142-156 (in Russian)

[27] V. Kh. Froim, Linear partial differential equations whose coefficients have pole type singularities in one argument only, Siberian Math. J., 11-3 (1970), 625-647 (in Russian).