Fuchsian type equations and Fuchsian hyperbolic equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] S. Alinhac, Problèmes de Cauchy pour des opérateurs singuliers, Bull. Soc. Math. France, 102 (1974), 289-315.
[2] M. S. Baouendi and C. Goulaouic, Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math., 26 (1973), 455-475.
[3] M. S. Baouendi and C. Goulaouic, Cauchy problems with multiple characteristics in spaces of regular distributions, Uspehi Mat. Nauk, 29-2 (1974), 70-76 (in Russian).
[4] J. M. Bony and P. Schapira, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Invent. Math., 17 (1972), 95-105.
[5] J. M. Bony and P. Schapira, Solutions hyperfonctions du problème de Cauchy, Lecture Notes in Math. No. 287, Springer, 1973, pp. 82-98.
[6] L. Boutet de Monvel and P. Kree, Pseudo-differential operators and Gevrey classes, Ann. Inst. Fourier, 17-1 (1967), 295-323.
[7] E. A. Coddington and N. Levinson, Theory of ordinary differential equations,. McGraw-Hill, New York, 1955.
[8] Y. Hasegawa, On the initial-value problems with data on a double characteristic, J. Math. Kyoto Univ., 11-2 (1971), 357-372.
[9] Y. Hasegawa, On the initial-value problems with data on a characteristic hypersurface, J. Math. Kyoto Univ., 13-3 (1973), 579-593.
[10] A. Kaneko, Singular spectrum of boundary values of solutions of partial differential equations with real analytic coefficients, Sci. Papers Coll. Gen. Ed. Univ. Tokyo, 25-2 (1975), 59-68.
[11] M. Kashiwara and T. Kawai, Micro-hyperbolic pseudo-differential operators I, J. Math. Soc. Japan, 27 (1975), 359-404.
[12] M. Kashiwara and T. Kawai, Micro-hyperbolic pseudo-differential operators, Lecture Notes in Math. No. 449, Springer, pp. 70-77.
[13] M. Kashiwara and T. Oshima, Systems of differential equations with regular singularities and their boundary value problems, Ann. of Math., 106 (1977), 145-200.
[14] H. Komatsu, A local version of Bochner's tube theorem, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 19 (1972), 201-214.
[15] H. Komatsu, and T. Kawai, Boundary values of hyperfunction solutions of linear partial differential equations, Publ. Res. Inst. Math. Sci., 7 (1971), 95-104.
[16] T. Miwa, On micro-analyticity of the elementary solutions of hyperbolic differential equations with real analytic coefficients, Proc. Japan Acad., 50 (1974), 271-272.
[17] T. Miwa, Propagation of micro-analyticity for solutions of pseudo-differential equations I, Publ. Res. Inst. Math. Sci., 10-2 (1975), 522-533.
[19] T. Oshima, Singularities in contact geometry and degenerate pseudo-differential equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 21 (1974), 43-83.
[20] M. Sato and M. Kashiwara, The determinant of matrices of pseudo-differential operators, Proc. Japan Acad., 51-1 (1975), 17-19.
[21] M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations, Lecture Notes in Math. No. 287, Springer, 1973, pp. 265-529.
[22] Y. Tsuno, On the prolongation of local holomorphic solutions of partial differential equations, III, equations of the Fuchsian type, J. Math. Soc. Japan, 28 (1976), 611-616.
[23] L. R. Volevich, On general systems of differential equations, Dokl. Acad. Nauk SSSR, 132 (1960), 20-23 (in Russian).
[24] S. Delache and J. Leray, Calcul de la solution elémentaire de l'opérateur d'Euler- Poisson-Darboux et de l'opérateur de Tricomi-Clairaut, hyperbolique, d'order 2, Bull. Soc. Math. France, 99 (1971), 313-336.
[25] V. Kh. Froim, Linear scalar partial differential equations with regular singularities on a hypersurface, Differencial'nye Uravnenija, 9-3 (1973), 533-541 (in Russian).
[26] V. Kh. Froim, The representation of analytic solutions of certain partial differential equations with coefficients having pole-type singularities with respect tc one argument, Differencial'nye Uravnenija, 7-1 (1971), 142-156 (in Russian)