Fructose-Based Production of Short-Chain-Length and Medium-Chain-Length Polyhydroxyalkanoate Copolymer by Arctic Pseudomonas sp. B14-6
Tóm tắt
Từ khóa
Tài liệu tham khảo
Harding, 2011, Microbes in High Arctic Snow and Implications for the Cold Biosphere, Appl. Environ. Microbiol., 77, 3234, 10.1128/AEM.02611-10
Ayub, 2007, The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island, Plasmid, 58, 240, 10.1016/j.plasmid.2007.05.003
Deming, 2002, Psychrophiles and polar regions, Curr. Opin. Microbiol., 5, 301, 10.1016/S1369-5274(02)00329-6
Lee, 2004, Growth temperature-dependent conversion of de novo-synthesized unsaturated fatty acids into polyhydroxyalkanoic acid and membrane cyclopropane fatty acids in the psychrotrophic bacterium Pseudomonas fluorescens BM07, J. Microbiol. Biotechnol., 14, 1217
Verlinden, 2007, Bacterial synthesis of biodegradable polyhydroxyalkanoates, J. Appl. Microbiol., 102, 1437, 10.1111/j.1365-2672.2007.03335.x
Obruca, S., Sedlacek, P., Krzyzanek, V., Mravec, F., Hrubanova, K., Samek, O., Kucera, D., Benesova, P., and Marova, I. (2016). Accumulation of Poly(3-hydroxybutyrate) Helps Bacterial Cells to Survive Freezing. PLoS ONE, 11.
Ayub, 2008, Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation, Extremophiles, 13, 59, 10.1007/s00792-008-0197-z
Obruca, 2018, Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications, Biotechnol. Adv., 36, 856, 10.1016/j.biotechadv.2017.12.006
Bhatia, 2021, Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective, Bioresour. Technol., 326, 124733, 10.1016/j.biortech.2021.124733
Luengo, 2003, Bioplastics from microorganisms, Curr. Opin. Microbiol., 6, 251, 10.1016/S1369-5274(03)00040-7
Park, 2012, Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters, Biotechnol. Adv., 30, 1196, 10.1016/j.biotechadv.2011.11.007
Jiang, G., Hill, D.J., Kowalczuk, M., Johnston, B., Adamus, G., Irorere, V., and Radecka, I. (2016). Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery. Int. J. Mol. Sci., 17.
Danis, 2015, Preparation of poly(3-hydroxybutyrate-co-hydroxyvalerate) films from halophilic archaea and their potential use in drug delivery, Extremophiles, 19, 515, 10.1007/s00792-015-0735-4
Chen, 2015, Engineering Biosynthesis Mechanisms for Diversifying Polyhydroxyalkanoates, Trends Biotechnol., 33, 565, 10.1016/j.tibtech.2015.07.007
Cheng, J., and Charles, T.C. (2016). Functional metagenomics using Pseudomonas putida expands the known diversity of polyhydroxyalkanoate synthases and enables the production of novel polyhydroxyalkanoate copolymers. BioRxiv.
Bhatia, 2019, Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids, Int. J. Biol. Macromol., 133, 1, 10.1016/j.ijbiomac.2019.04.083
Kiewisz, 2016, Bacterial polyhydroxyalkanoates: Still fabulous?, Microbiol. Res., 192, 271, 10.1016/j.micres.2016.07.010
Philip, 2007, Polyhydroxyalkanoates: Biodegradable polymers with a range of applications, J. Chem. Technol. Biotechnol., 82, 233, 10.1002/jctb.1667
Yang, 2011, Tailor-made type II Pseudomonas PHA synthases and their use for the biosynthesis of polylactic acid and its copolymer in recombinant Escherichia coli, Appl. Microbiol. Biotechnol., 90, 603, 10.1007/s00253-010-3077-2
Metzler, J.B. (2004). Fatty Acid Biosynthesis and Biologically Significant Acyl Transfer Reactions in Pseudomonads, Springer.
Kessler, 2000, Taxonomic implications of synthesis of poly-beta-hydroxybutyrate and other poly-beta-hydroxyalkanoates by aerobic pseudomonads, Int. J. Syst. Evol. Microbiol., 50, 711, 10.1099/00207713-50-2-711
Solaiman, 2005, Genetic Characterization of the Poly(hydroxyalkanoate) Synthases of Various Pseudomonas oleovorans Strains, Curr. Microbiol., 50, 329, 10.1007/s00284-005-4508-7
Oliveira, 2020, Towards the Production of mcl-PHA with Enriched Dominant Monomer Content: Process Development for the Sugarcane Biorefinery Context, J. Polym. Environ., 28, 844, 10.1007/s10924-019-01637-2
Rodriguez, 2013, Improved production of medium-chain-length Polyhydroxyalkanotes in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains, J. Microbiol. Biotechnol., 24, 59
Schmauder, 2017, Metabolic engineering to expand the substrate spectrum of Pseudomonas putida toward sucrose, Microbiologyopen, 6, e00473, 10.1002/mbo3.473
Sohn, 2020, Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains, Int. J. Biol. Macromol., 149, 593, 10.1016/j.ijbiomac.2020.01.254
Bhatia, 2018, Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding, Bioresour. Technol., 257, 92, 10.1016/j.biortech.2018.02.056
Choi, 2020, Effects of a Δ-9-fatty acid desaturase and a cyclopropane-fatty acid synthase from the novel psychrophile Pseudomonas sp. B14-6 on bacterial membrane properties, J. Ind. Microbiol. Biotechnol., 47, 1045, 10.1007/s10295-020-02333-0
Park, 2020, Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies, Int. J. Biol. Macromol., 154, 929, 10.1016/j.ijbiomac.2020.03.129
Sathiyanarayanan, 2017, Production and characterization of medium-chain-length polyhydroxyalkanoate copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620, Int. J. Biol. Macromol., 97, 710, 10.1016/j.ijbiomac.2017.01.053
Bhatia, 2019, Bioconversion of barley straw lignin into biodiesel using Rhodococcus sp. YHY01, Bioresour. Technol., 289, 121704, 10.1016/j.biortech.2019.121704
Bhatia, 2017, Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01, Bioresour. Technol., 233, 99, 10.1016/j.biortech.2017.02.061
Gumel, A.M., Annuar, M.S.M., and Heidelberg, T. (2012). Biosynthesis and Characterization of Polyhydroxyalkanoates Copolymers Produced by Pseudomonas putida Bet001 Isolated from Palm Oil Mill Effluent. PLoS ONE, 7.
Choi, 2020, Production of low molecular weight P (3HB-co-3HV) by butyrateacetoacetate CoA-transferase (cftAB) in Escherichia coli, Biotechnol. Bioprocess Eng., 25, 279, 10.1007/s12257-019-0366-1
Hokamura, 2015, Characterization and identification of the proteins bound to two types of polyhydroxyalkanoate granules in Pseudomonas sp. 61-3, Biosci. Biotechnol. Biochem., 79, 1369, 10.1080/09168451.2015.1023250
Choi, 2020, Microbial Polyhydroxyalkanoates and Nonnatural Polyesters, Adv. Mater., 32, e1907138, 10.1002/adma.201907138
Pacheco, 2019, Exploiting the natural poly(3-hydroxyalkanoates) production capacity of Antarctic Pseudomonas strains: From unique phenotypes to novel biopolymers, J. Ind. Microbiol. Biotechnol., 46, 1139, 10.1007/s10295-019-02186-2
Kato, 1996, Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars, Appl. Microbiol. Biotechnol., 45, 363, 10.1007/s002530050697
Matsusaki, 1998, Cloning and Molecular Analysis of the Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) Biosynthesis Genes in Pseudomonas sp. Strain 61-3, J. Bacteriol., 180, 6459, 10.1128/JB.180.24.6459-6467.1998
Pacheco, 2019, In-Depth Genomic and Phenotypic Characterization of the Antarctic Psychrotolerant Strain Pseudomonas sp. MPC6 Reveals Unique Metabolic Features, Plasticity, and Biotechnological Potential, Front. Microbiol., 10, 1154, 10.3389/fmicb.2019.01154
Goh, 2012, Polyhydroxyalkanoate production by antarctic soil bacteria isolated from Casey Station and Signy Island, Microbiol. Res., 167, 211, 10.1016/j.micres.2011.08.002
Li, 2013, Psychrotrophic Pseudomonas mandelii CBS-1 produces high levels of poly-β-hydroxybutyrate, SpringerPlus, 2, 335, 10.1186/2193-1801-2-335
Lee, 2001, Accumulation of Polyhydroxyalkanoic Acid Containing Large Amounts of Unsaturated Monomers in Pseudomonas fluorescens BM07 Utilizing Saccharides and Its Inhibition by 2-Bromooctanoic Acid, Appl. Environ. Microbiol., 67, 4963, 10.1128/AEM.67.11.4963-4974.2001
Choonut, A., Prasertsan, P., Klomklao, S., and Sangkharak, K. (2020). Study on mcl-PHA Production by Novel Thermotolerant Gram-Positive Isolate. J. Polym. Environ., 28.
Wellen, 2015, Melting and crystallization of poly(3-hydroxybutyrate): Effect of heating/cooling rates on phase transformation, Polímeros, 25, 296, 10.1590/0104-1428.1961
Kong, 2002, The measurement of the crystallinity of polymers by DSC, Polymer, 43, 3873, 10.1016/S0032-3861(02)00235-5
Matsusaki, 2000, Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3, Biomacromolecules, 1, 17, 10.1021/bm9900040
Abe, 1994, Synthesis and Characterization of Poly[(R,S)-3-hydroxybutyrate-b-6-hydroxyhexanoate] as a Compatibilizer for a Biodegradable Blend of Poly[(R)-3-hydroxybutyrate] and Poly(6-hydroxyhexanoate), Macromole, 27, 6012, 10.1021/ma00099a012
Brandrup, J., Immergut, E.H., Grulke, E.A., Abe, A., and Bloch, D.R. (1999). Polymer Handbook, Wiley.