From theory to practice: Supporting industrial decarbonization and energy cooperation in Austria
Tài liệu tham khảo
2011
Domenech, 2019, Mapping industrial symbiosis development in Europe_ typologies of networks, characteristics, performance and contribution to the circular economy, Resour. Conserv. Recycl., 141, 76, 10.1016/j.resconrec.2018.09.016
Neves, 2020, A comprehensive review of industrial symbiosis, J. Clean. Prod., 247, 10.1016/j.jclepro.2019.119113
Karlsson, 2008, Using an optimization model to evaluate the economic benefits of industrial symbiosis in the forest industry, J. Clean. Prod., 16, 1536, 10.1016/j.jclepro.2007.08.017
Wang, 2019, Life cycle assessment of reduction of environmental impacts via industrial symbiosis in an energy-intensive industrial park in China, J. Clean. Prod., 241, 10.1016/j.jclepro.2019.118358
Aissani, 2019, Life cycle assessment of industrial symbiosis: a critical review of relevant reference scenarios, J. Ind. Ecol., 23, 972, 10.1111/jiec.12842
Kerdlap, 2020, M3-IS-LCA: a methodology for multi-level life cycle environmental performance evaluation of industrial Symbiosis networks, ResourConserv. Recycl., 161
Martin, 2015, Who gets the benefits? An approach for assessing the environmental performance of industrial symbiosis, J. Clean. Prod., 98, 263, 10.1016/j.jclepro.2013.06.024
Jacobsen, 2006, Industrial Symbiosis in kalundborg, Denmark: a quantitative assessment of economic and environmental aspects, J. Ind. Ecol., 10, 239, 10.1162/108819806775545411
Paquin, 2015, Creating economic and environmental value through industrial symbiosis, Long Range Plan., 48, 95, 10.1016/j.lrp.2013.11.002
Fraccascia, 2021, Ecosystem indicators for measuring industrial symbiosis, Ecol. Econ., 183, 10.1016/j.ecolecon.2021.106944
Ehrenfeld, 1997, Industrial ecology in practice: the evolution of interdependence at kalundborg, J. Ind. Ecol., 1, 67, 10.1162/jiec.1997.1.1.67
SymbiosisCenter Denmark, Home | Kalundborg Symbiosis. http://www.symbiosis.dk/en/ (accessed 28 January 2020).
Kim, 2018, Co-benefit potential of industrial and urban symbiosis using waste heat from industrial park in Ulsan, Korea, Resour., Conserv. Recycl., 135, 225, 10.1016/j.resconrec.2017.09.027
Behera, 2012, Evolution of ‘designed’ industrial symbiosis networks in the Ulsan Eco-Industrial Park: ‘research and development into business’ as the enabling framework, J. Clean. Prod., 29–30, 103, 10.1016/j.jclepro.2012.02.009
Dong, 2014, Achieving carbon emission reduction through industrial & urban symbiosis: a case of Kawasaki, Energy, 64, 277, 10.1016/j.energy.2013.11.005
Neves, 2019, Current status, emerging challenges, and future prospects of industrial symbiosis in Portugal, Sustainability, 11, 5497, 10.3390/su11195497
Evans, 2017
Li, 2017, The vulnerability of industrial symbiosis: a case study of Qijiang Industrial Park, China, J. Clean. Prod., 157, 267, 10.1016/j.jclepro.2017.04.087
Wang, 2017, Building institutional capacity for industrial symbiosis development: a case study of an industrial symbiosis coordination network in China, J. Clean. Prod., 142, 1571, 10.1016/j.jclepro.2016.11.146
Zhang, 2019, Structural features and evolutionary mechanisms of industrial symbiosis networks: comparable analyses of two different cases, J. Clean. Prod., 213, 528, 10.1016/j.jclepro.2018.12.173
Schwarz, 1997, Implementing nature's lesson: the industrial recycling network enhancing regional development, J. Clean. Prod., 5, 47, 10.1016/S0959-6526(97)00009-7
Massard, 2014, International survey on eco-innovation parks
Eslamizadeh, 2020, Can industries be parties in collective action? Community energy in an Iranian industrial zone, Energy Res. Social Sci., 70, 10.1016/j.erss.2020.101763
Chertow, 2000, Industrial symbiosis: literature and taxonomy, Annu. Rev. Energy Environ., 25, 313, 10.1146/annurev.energy.25.1.313
Chertow, 2008, Industrial symbiosis in Puerto Rico: environmentally related agglomeration economies, Region. Stud., 42, 1299, 10.1080/00343400701874123
Domenech, 2018
Graedel, 1996, On the concept of industrial ecology, Annu. Rev. Energy Environ., 21, 69, 10.1146/annurev.energy.21.1.69
Lowe, 1995, Industrial ecology and industrial ecosystems, J. Clean. Prod., 3, 47, 10.1016/0959-6526(95)00045-G
Tibbs, 1992
Ntasiou, 2017, The standard of industrial symbiosis. Environmental criteria and methodology on the establishment and operation of industrial and business parks, ProcediaEnviron. Sci., 38, 744
Taddeo, 2017, Industrial symbiosis, networking and innovation: the potential role of innovation poles, Sustainability, 9, 1, 10.3390/su9020169
Mirata, 2004, Experiences from early stages of a national industrial symbiosis programme in the UK: determinants and coordination challenges, J. Clean. Prod., 12, 967, 10.1016/j.jclepro.2004.02.031
Porter, 1990, 90211
Södergren, 2021, The role of local governments in overcoming barriers to industrial symbiosis, 2
Sovacool, 2014, Diversity: energy studies need social science, Nature, 511, 529, 10.1038/511529a
Sovacool, 2015, Integrating social science in energy research, Energy Res. Soc. Sci., 6, 95, 10.1016/j.erss.2014.12.005
Yin, 2009
Heaslip, 2018, Developing transdisciplinary approaches to community energy transitions: an island case study, Energy Res. Soc. Sci., 45, 153, 10.1016/j.erss.2018.07.013
Strazza, 2019
Kollmann, 2019
Mainar-Toledo, 2022, Accelerating sustainable and economic development via industrial energy cooperation and shared services – a case study for three European countries, Renew. Sust. Energ. Rev., 153, 10.1016/j.rser.2021.111737
Mortensen, 2019, Critical factors for industrial symbiosis emergence process, J. Clean. Prod., 212, 56, 10.1016/j.jclepro.2018.11.222
de Bruyn, 2019
Cagno, 2013, A novel approach for barriers to industrial energy efficiency, Renew. Sust. Energ. Rev., 19, 290, 10.1016/j.rser.2012.11.007
2019
2019
Linhart, 2021, Citizen participation to finance PV power plants focused on self-consumption on company roofs—findings from an Austrian case study, Energies, 14, 738, 10.3390/en14030738
Mieg, 2005
Lamnek, 2010
Mayring, 2000, 1
Mayring, 2007, On generalization in qualitatively oriented research, forum: qualitative, Soc. Res., 8
Walter, 2009
Flick, 2017
2003, Commission Recommendation of 6 May 2003 concerning the definition of micro, small and medium-sized enterprises (Text with EEA relevance) (notified under document number C(2003) 1422), Official Journal of the European Union, 36
International Synergies Limited, Industrial Synergies - industrial ecology solutions: Cross Sector Engagement Model. https://www.international-synergies.com/our-approach/cross-sector-engagement-model/ (accessed 21 January 2020).
Bizkaia Sortaldeko Industrialdea, 2020
Gibbs, 2003, Trust and networking in inter-firm relations: the case of eco-industrial development, RLCE, 18, 222, 10.1080/0269094032000114595
Chertow, 2007, “Uncovering” industrial symbiosis, J. Ind. Ecol., 11, 11, 10.1162/jiec.2007.1110
Kastner, 2015, Quantitative tools for cultivating symbiosis in industrial parks; a literature review, Appl. Energy, 155, 599, 10.1016/j.apenergy.2015.05.037
Valenzuela-Venegas, 2018, A resilience indicator for Eco-Industrial Parks, J. Clean. Prod., 174, 807, 10.1016/j.jclepro.2017.11.025
Bellantuono, 2017, The organization of eco-industrial parks and their sustainable practices, J. Clean. Prod., 161, 362, 10.1016/j.jclepro.2017.05.082
Ceglia, 2017, Critical elements for eco-retrofitting a conventional industrial park: Social barriers to be overcome, J. Environ. Manage., 187, 375, 10.1016/j.jenvman.2016.10.064
Chertow, 2005
Blumstein, 1980, Overcoming social and institutional barriers to energy conservation, Energy, 5, 355, 10.1016/0360-5442(80)90036-5
Song, 2018, Social network analysis on industrial symbiosis: a case of Gujiao eco-industrial park, J. Clean. Prod., 193, 414, 10.1016/j.jclepro.2018.05.058
Deutz, 2008, Industrial ecology and regional development: eco-industrial development as cluster policy, Regional Stud., 42, 1313, 10.1080/00343400802195121
Rodin, 2021, The perfect match? 100 reasons why energy cooperation is not realized in industrial parks, Energy Res. Social Sci., 74, 10.1016/j.erss.2021.101964
Côté, 1998, Designing eco-industrial parks: a synthesis of some experiences, J. Clean. Prod., 6, 181, 10.1016/S0959-6526(98)00029-8
Nilguen, 2017
Velenturf, 2016, Promoting industrial symbiosis: using the concept of proximity to explore social network development, J. Ind. Ecol., 20, 700, 10.1111/jiec.12315
Yazan, 2016, The design of industrial symbiosis: an input–output approach, J. Clean. Prod., 129, 537, 10.1016/j.jclepro.2016.03.160
Lombardi, 2012, Industrial symbiosis testing the boundaries and advancing knowledge, J. Ind. Ecol., 16, 2, 10.1111/j.1530-9290.2012.00455.x
Lehtoranta, 2011, Industrial symbiosis and the policy instruments of sustainable consumption and production, J. Clean. Prod., 10.1016/j.jclepro.2011.04.002
Langlois-Bertrand, 2015, Political-institutional barriers to energy efficiency, Energy Strat. Rev., 8, 30, 10.1016/j.esr.2015.08.001
Hochman, 2017, Energy efficiency barriers in commercial and industrial firms in Ukraine: an empirical analysis, Energy Econ., 63, 22, 10.1016/j.eneco.2017.01.013
Nagel, 2017
2017
Trianni, 2016, Barriers, drivers and decision-making process for industrial energy efficiency: a broad study among manufacturing small and medium-sized enterprises, Appl. Energy, 162, 1537, 10.1016/j.apenergy.2015.02.078
Sorrell, 2011
Brunke, 2014, Empirical investigation of barriers and drivers to the adoption of energy conservation measures, energy management practices and energy services in the Swedish iron and steel industry, J. Clean. Prod., 84, 509, 10.1016/j.jclepro.2014.04.078
Worrell, 2011
Peccianti, 2019
Peccianti, 2018
2021
2018
Hüttler, 2017
Clausen, 2018
Wu, 2018, Role of workplace charging opportunities on adoption of plug-in electric vehicles – analysis based on GPS-based longitudinal travel data, Energy Policy, 114, 367, 10.1016/j.enpol.2017.12.015
Baresch, 2019, Allocation of e-car charging: assessing the utilization of charging infrastructures by location, Transp. Res. A Policy Pract., 124, 388, 10.1016/j.tra.2019.04.009
NGVA Europe, Stations Overview. https://www.ngva.eu/stations-map/ (accessed 23 January 2020).
Osorio-Tejada, 2017, Liquefied natural gas: could it be a reliable option for road freight transport in the EU?, Renew. Sust. Energ. Rev., 71, 785, 10.1016/j.rser.2016.12.104
Xu, 2019, Perspectives for low-temperature waste heat recovery, Energy, 176, 1037, 10.1016/j.energy.2019.04.001
Fang, 2013, Industrial waste heat utilization for low temperature district heating, Energy Policy, 62, 236, 10.1016/j.enpol.2013.06.104
Rodin, 2018
Biermayr, 2020
Biermayr, 2021
2021
Rohdin, 2006, Barriers to and drivers for energy efficiency in the Swedish foundry industry, Energy Policy, 35, 672, 10.1016/j.enpol.2006.01.010
Hein, 2017, Stakeholder power in industrial symbioses: a stakeholder value network approach, J. Clean. Prod., 148, 923, 10.1016/j.jclepro.2017.01.136
Tseng, 2018, Circular economy meets industry 4.0: can big data drive industrial symbiosis?, Resour. Conserv. Recycl. 131 2018 146 147 10.1016/j.resconrec.2017.12.028, 131, 146
Burström, 2001, Municipalities and industrial ecology: reconsidering municipal environmental management, Sust. Dev., 9, 36, 10.1002/sd.154
Paquin, 2012, The evolution of facilitated industrial symbiosis, J. Ind. Ecol., 16, 83, 10.1111/j.1530-9290.2011.00437.x
Patala, 2020, Intermediation dilemmas in facilitated industrial symbiosis, J. Clean. Prod., 261, 10.1016/j.jclepro.2020.121093
2020
SPIRE-SAIS
FISSAC, 2018
Lawal, 2021, Industrial symbiosis tools—a review, J. Clean. Prod., 280, 10.1016/j.jclepro.2020.124327
Vladimirova, 2019
Moreno
Tu