From the colour glass condensate to filamentation: systematics of classical Yang–Mills theory

The European Physical Journal C - Tập 79 - Trang 1-17 - 2019
Owe Philipsen1,2, Björn Wagenbach1,2, Savvas Zafeiropoulos3
1Institut für Theoretische Physik, Goethe-Universität Frankfurt am Main, Frankfurt, Germany
2John von Neumann Institute for Computing (NIC), GSI, Darmstadt, Germany
3Institut für Theoretische Physik, Universität Heidelberg, Heidelberg, Germany

Tóm tắt

The non-equilibrium early time evolution of an ultra-relativistic heavy ion collision is often described by classical lattice Yang–Mills theory, starting from the colour glass condensate (CGC) effective theory with an anisotropic energy momentum tensor as initial condition. In this work we investigate the systematics associated with such studies and their dependence on various model parameters (IR, UV cutoffs and the amplitude of quantum fluctuations) which are not yet fixed by experiment. We perform calculations for SU( $$2$$ ) and SU( $$3$$ ), both in a static box and in an expanding geometry. Generally, the dependence on model parameters is found to be much larger than that on technical parameters like the number of colours, boundary conditions or the lattice spacing. In a static box, all setups lead to isotropisation through chromo-Weibel instabilities, which is illustrated by the accompanying filamentation of the energy density. However, the associated time scale depends strongly on the model parameters and in all cases is longer than the phenomenologically expected one. In the expanding system, no isotropisation is observed for any parameter choice. We show how investigations at fixed initial energy density can be used to better constrain some of the model parameters.

Tài liệu tham khảo

U.W. Heinz, P.F. Kolb, Early thermalization at RHIC. Nucl. Phys. A 702, 269–280 (2002). arXiv:hep-ph/0111075 [hep-ph] P. Romatschke, U. Romatschke, Viscosity information from relativistic nuclear collisions: how perfect is the fluid observed at RHIC? Phys. Rev. Lett. 99, 172301 (2007). arXiv:0706.1522 [nucl-th] P. Romatschke, Do nuclear collisions create a locally equilibrated quarkâĂŞgluon plasma? Eur. Phys. J. C 77(1), 21 (2017). arXiv:1609.02820 [nucl-th] E. Iancu, A. Leonidov, L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1. Nucl. Phys. A 692, 583–645 (2001). arXiv:hep-ph/0011241 [hep-ph] P.F. Kolb, J. Sollfrank, U.W. Heinz, Anisotropic transverse flow and the quark hadron phase transition. Phys. Rev. C 62, 054909 (2000). arXiv:hep-ph/0006129 [hep-ph] U.W. Heinz, Quark–gluon transport theory. Nucl. Phys. A 418, 603C–612C (1984) S. Mrowczynski, Stream instabilities of the quark–gluon plasma. Phys. Lett. B 214, 587 (1988) Y. Pokrovsky, A. Selikhov, Filamentation in a quark–gluon plasma. JETP Lett. 47, 12–14 (1988) S. Mrowczynski, Plasma instability at the initial stage of ultrarelativistic heavy ion collisions. Phys. Lett. B 314, 118–121 (1993) J.-P. Blaizot, E. Iancu, The quark gluon plasma: collective dynamics and hard thermal loops. Phys. Rep. 359, 355–528 (2002). arXiv:hep-ph/0101103 [hep-ph] P. Romatschke, M. Strickland, Collective modes of an anisotropic quark gluon plasma. Phys. Rev. D 68, 036004 (2003). arXiv:hep-ph/0304092 [hep-ph] P.B. Arnold, J. Lenaghan, G.D. Moore, QCD plasma instabilities and bottom up thermalization. JHEP 0308, 002 (2003). arXiv:hep-ph/0307325 [hep-ph] M.E. Carrington, K. Deja, S. Mrowczynski, Plasmons in anisotropic quark–gluon plasma. Phys. Rev. C 90, 034913 (2014). arXiv:1407.2764 [hep-ph] P. Romatschke, R. Venugopalan, Collective non-Abelian instabilities in a melting color glass condensate. Phys. Rev. Lett. 96, 062302 (2006). arXiv:hep-ph/0510121 [hep-ph] P. Romatschke, R. Venugopalan, The unstable glasma. Phys. Rev. D 74, 045011 (2006). arXiv:hep-ph/0605045 [hep-ph] K. Fukushima, Evolving Glasma and Kolmogorov spectrum. Acta Phys. Polon. B 42, 2697–2715 (2011). arXiv:1111.1025 [hep-ph] J. Berges, K. Boguslavski, S. Schlichting, Nonlinear amplification of instabilities with longitudinal expansion. Phys. Rev. D 85, 076005 (2012). arXiv:1201.3582 [hep-ph] J. Berges, K. Boguslavski, S. Schlichting, R. Venugopalan, Turbulent thermalization process in heavy-ion collisions at ultrarelativistic energies. Phys. Rev. D 89, 074011 (2014). arXiv:1303.5650 [hep-ph] K. Fukushima, Turbulent pattern formation and diffusion in the early-time dynamics in relativistic heavy-ion collisions. Phys. Rev. C 89(2), 024907 (2014). arXiv:1307.1046 [hep-ph] F. Gelis, Color glass condensate and glasma. Int. J. Mod. Phys. A 28, 1330001 (2013). arXiv:1211.3327 [hep-ph] A. Kurkela, G.D. Moore, Thermalization in weakly coupled nonabelian plasmas. JHEP 1112, 044 (2011). arXiv:1107.5050 [hep-ph] A. Kurkela, G.D. Moore, Bjorken flow, plasma instabilities, and thermalization. JHEP 1111, 120 (2011). arXiv:1108.4684 [hep-ph] P. Romatschke, A. Rebhan, Plasma instabilities in an anisotropically expanding geometry. Phys. Rev. Lett. 97, 252301 (2006). arXiv:hep-ph/0605064 [hep-ph] A. Rebhan, M. Strickland, M. Attems, Instabilities of an anisotropically expanding non-Abelian plasma: 1D+3V discretized hard-loop simulations. Phys. Rev. D 78, 045023 (2008). arXiv:0802.1714 [hep-ph] M. Attems, A. Rebhan, M. Strickland, Instabilities of an anisotropically expanding non-Abelian plasma: 3D+3V discretized hard-loop simulations. Phys. Rev. D 87, 025010 (2013). arXiv:1207.5795 [hep-ph] R. Baier, A.H. Mueller, D. Schiff, D.T. Son, ’Bottom up’ thermalization in heavy ion collisions. Phys. Lett. B 502, 51–58 (2001). arXiv:hep-ph/0009237 [hep-ph] P.B. Arnold, G.D. Moore, L.G. Yaffe, Effective kinetic theory for high temperature gauge theories. JHEP 01, 030 (2003). arXiv:hep-ph/0209353 [hep-ph] A. Kurkela, Initial state of heavy-ion collisions: isotropization and thermalization. Nucl. Phys. A 956, 136–143 (2016). arXiv:1601.03283 [hep-ph] J. Berges, K. Boguslavski, S. Schlichting, R. Venugopalan, Basin of attraction for turbulent thermalization and the range of validity of classical–statistical simulations. JHEP 05, 054 (2014). arXiv:1312.5216 [hep-ph] G. Aarts, J. Berges, Classical aspects of quantum fields far from equilibrium. Phys. Rev. Lett. 88, 041603 (2002). arXiv:hep-ph/0107129 [hep-ph] A.H. Mueller, D.T. Son, On the equivalence between the Boltzmann equation and classical field theory at large occupation numbers. Phys. Lett. B 582, 279–287 (2004). arXiv:hep-ph/0212198 [hep-ph] S. Jeon, The Boltzmann equation in classical and quantum field theory. Phys. Rev. C 72, 014907 (2005). arXiv:hep-ph/0412121 [hep-ph] M. Attems, O. Philipsen, C. Schäfer, B. Wagenbach, S. Zafeiropoulos, A real-time lattice simulation of the thermalization of a gluon plasma: first results. Acta Phys. Polon. Suppl. 9, 603 (2016). arXiv:1605.07064 [hep-ph] L.D. McLerran, The color glass condensate and small x physics: four lectures. Lect. Notes Phys. 583, 291–334 (2002). arXiv:hep-ph/0104285 [hep-ph] E. Iancu, R. Venugopalan, The color glass condensate and high-energy scattering in QCD. arXiv:hep-ph/0303204 [hep-ph] L.D. McLerran, R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum. Phys. Rev. D 49, 3352–3355 (1994). arXiv:hep-ph/9311205 [hep-ph] T. Lappi, Wilson line correlator in the MV model: relating the glasma to deep inelastic scattering. Eur. Phys. J. C 55, 285–292 (2008). arXiv:0711.3039 [hep-ph] H. Fujii, K. Fukushima, Y. Hidaka, Initial energy density and gluon distribution from the Glasma in heavy-ion collisions. Phys. Rev. C 79, 024909 (2009). arXiv:0811.0437 [hep-ph] K. Fukushima, Randomness in infinitesimal extent in the McLerran–Venugopalan model. Phys. Rev. D 77, 074005 (2008). arXiv:0711.2364 [hep-ph] A. Kurkela, G.D. Moore, UV cascade in classical Yang–Mills theory. Phys. Rev. D 86, 056008 (2012). arXiv:1207.1663 [hep-ph] J. Berges, K. Boguslavski, S. Schlichting, R. Venugopalan, Universal attractor in a highly occupied non-Abelian plasma. Phys. Rev. D 89(11), 114007 (2014). arXiv:1311.3005 [hep-ph] B. Gough, GNU Scientific Library Reference Manual, 3rd edn. (Network Theory Ltd., Massachusetts, 2009) K. Fukushima, F. Gelis, L. McLerran, Initial singularity of the little bang. Nucl. Phys. A 786, 107–130 (2007). arXiv:hep-ph/0610416 [hep-ph] T. Epelbaum, F. Gelis, Fluctuations of the initial color fields in high energy heavy ion collisions. Phys. Rev. D 88, 085015 (2013). arXiv:1307.1765 [hep-ph] K. Fukushima, F. Gelis, The evolving Glasma. Nucl. Phys. A 874, 108–129 (2012). arXiv:1106.1396 [hep-ph] T. Lappi, L. McLerran, Some features of the glasma. Nucl. Phys. A 772, 200–212 (2006). arXiv:hep-ph/0602189 [hep-ph] A. Krasnitz, R. Venugopalan, The Initial gluon multiplicity in heavy ion collisions. Phys. Rev. Lett. 86, 1717–1720 (2001). arXiv:hep-ph/0007108 [hep-ph] T. Lappi, Production of gluons in the classical field model for heavy ion collisions. Phys. Rev. C 67, 054903 (2003). arXiv:hep-ph/0303076 [hep-ph] D. Bodeker, K. Rummukainen, Non-abelian plasma instabilities for strong anisotropy. JHEP 07, 022 (2007). arXiv:0705.0180 [hep-ph] J.P. Blaizot, T. Lappi, Y. Mehtar-Tani, On the gluon spectrum in the glasma. Nucl. Phys. A 846, 63–82 (2010). arXiv:1005.0955 [hep-ph] G.D. Moore, Problems with lattice methods for electroweak preheating. JHEP 11, 021 (2001). arXiv:hep-ph/0109206 [hep-ph] SciDAC Collaboration, LHPC Collaboration, UKQCD Collaboration Collaboration, R.G. Edwards, B. Joo, The Chroma software system for lattice QCD. Nucl. Phys. Proc. Suppl. 140, 832 (2005). arXiv:hep-lat/0409003 [hep-lat] A. Ipp, A. Rebhan, M. Strickland, Non-Abelian plasma instabilities: SU(3) vs. SU(2). Phys.Rev. D84, 056003 (2011). arXiv:1012.0298 [hep-ph] E. Iancu, K. Itakura, L. McLerran, A Gaussian effective theory for gluon saturation. Nucl. Phys. A 724, 181–222 (2003). arXiv:hep-ph/0212123 [hep-ph] R.J. Fries, J.I. Kapusta, Y. Li, Near-fields and initial energy density in the color glass condensate model. arXiv:nucl-th/0604054 [nucl-th] Y.V. Kovchegov, Can thermalization in heavy ion collisions be described by QCD diagrams? Nucl. Phys. A 762, 298–325 (2005) T. Lappi, Energy density of the glasma. Phys. Lett. B 643, 11–16 (2006). arXiv:hep-ph/0606207 [hep-ph] K. Boguslavski, A. Kurkela, T. Lappi, J. Peuron, Spectral function for overoccupied gluodynamics from real-time lattice simulations. Phys. Rev. D 98(1), 014006 (2018). arXiv:1804.01966 [hep-ph] A. Kurkela, Y. Zhu, Isotropization and hydrodynamization in weakly coupled heavy-ion collisions. Phys. Rev. Lett. 115(18), 182301 (2015). arXiv:1506.06647 [hep-ph]