From the Fan-KKM principle to extended real-valued equilibria and to variational-hemivariational inequalities with application to nonmonotone contact problems
Tóm tắt
This paper starts off by the celebrated Knaster–Kuratowski–Mazurkiewicz principle in the formulation by Ky Fan. We provide a novel variant of this principle and build an existence theory for extended real-valued equilibrium problems with general, then monotone and pseudomonotone bifunctions. We develop our existence theory first in general topological vector spaces, then in reflexive Banach spaces, where we investigate the issue of coerciveness for existence on unbounded sets. Thereafter we use the Clarke generalized differential calculus for locally Lipschitz functions and derive existence results for nonlinear variational-hemivariational inequalities and hemivariational quasivariational inequalities. As application, we treat a unilateral contact problem in solid mechanics with nonmonotone friction.
Tài liệu tham khảo
Adams, R.A., Fournier, J.F.F.: Sobolev Spaces, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)
Agarwal, R.P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications. Cambridge University Press, Cambridge (2009)
Alleche, B., Radulescu, V.D., Sebaoui, M.: The Tikhonov regularization for equilibrium problems and applications to quasi-hemivariational inequalities. Optim. Lett. 9, 483–503 (2015)
Ansari, Q.H., Lin, Y.C., Yao, J.C.: General KKM theorem with applications to minimax and variational inequalities. J. Optim. Theory Appl. 104, 41–57 (2000)
Aubin, J.P.: Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam (1979, 1982)
Berge, C.: Espaces Topologiques, Fonctions Multivoques, 2nd edn. Dunod, Paris (1966)
Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)
Brézis, H.: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18, 115–175 (1968)
Brézis, H., Nirenberg, L., Stampacchia, G.: A remark on Ky Fan’s minimax principle. Boll. Unione Mat. Ital. 6, 293–300 (1972)
Browder, F.E.: On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces. Proc. Natl. Acad. Sci. USA 56, 419–425 (1966)
Browder, F.E.: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Nonlinear functional analysis. In: Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill, 1968, pp. 1–308 (1976)
Capatina, A.: Variational Inequalities and Frictional Contact Problems. Advances in Mechanics and Mathematics, vol. 31. Springer, Cham (2014)
Chadli, O.: A Tikhonov-type regularization for Brezis pseudomonotone equilibrium problems in Banach spaces. J. Appl. Numer. Optim. 3(2), 285–295 (2021)
Chadli, O., Ansari, Q.H., Yao, J.C.: Mixed equilibrium problems and anti-periodic solutions for nonlinear evolution equations. J. Optim. Theory Appl. 168(2), 410–440 (2016)
Chadli, O., Chbani, Z., Riahi, H.: Some existence results for coercive and noncoercive hemivariational inequalities. Appl. Anal. 69(1–2), 125–131 (1998)
Chadli, O., Schaible, S., Yao, J.C.: Regularized equilibrium problems with application to noncoercive hemivariational inequalities. J. Optim. Theory Appl. 121(3), 571–596 (2004)
Chowdury, M.S.R., Tan, K.-K.: Generalization of Ky Fan’s minimax inequality with applications to generalized variational inequalities for pseudo-monotone operators and fixed point theorems. J. Math. Anal. Appl. 204, 910–929 (1996)
Clarke, F.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
Cocou, M.: A class of dynamic contact problems with Coulomb friction in viscoelasticity. Nonlinear Anal., Real World Appl. 22, 508–519 (2015)
Dao, M.N., Gwinner, J., Noll, D., Ovcharova, N.: Nonconvex bundle method with application to a delamination problem. Comput. Optim. Appl. 65(1), 173–203 (2016)
Ding, X.P., Tarafdar, E.: Generalized variational-like inequalities with pseudomonotone set-valued mappings. Arch. Math. (Basel) 74, 302–313 (2000)
Fan, K.: A generalization of Tychonoff’s fixed-point theorem. Math. Ann. 142, 305–310 (1961)
Fan, K.: A minimax inequality and applications, inequalities, III. In: Proc. Third Sympos., Univ. California, Los Angeles, Calif, 1969, pp. 103–113 (1972)
Giannessi, F., Khan, A.A.: Regularization of non-coercive quasi variational inequalities. Control Cybern. 29(1), 91–110 (2000)
Goeleven, D., Motreanu, D., Dumont, Y., Rochdi, M.: Variational and Hemivariational Inequalities: Theory, Methods and Applications, Vol. II: Unilateral Problems. Kluwer, Dordrecht (2003)
Gwinner, J.: Nichtlineare Variationsungleichungen mit Anwendungen. PhD Thesis, Universität Mannheim (1978)
Gwinner, J.: On the existence and approximation of solutions of pseudomonotone variational inequalities. In: Henn, R., Korte, B., Oettli, W. (eds.) Optimization and Operations Research. Lect. Notes Econ. Math. Syst., vol. 157, pp. 117–125. Springer, Berlin (1978)
Gwinner, J.: On fixed points and variational inequalities – a circular tour. Nonlinear Anal. 5, 565–583 (1981)
Gwinner, J.: An extension lemma and homogeneous programming. J. Optim. Theory Appl. 47, 321–336 (1985)
Gwinner, J.: A note on pseudomonotone functions, regularization, and relaxed coerciveness. Nonlinear Anal. 30, 4217–4227 (1997)
Gwinner, J., Ovcharova, N.: From solvability and approximation of variational inequalities to solution of nondifferentiable optimization problems in contact mechanics. Optimization 64(8), 1683–1702 (2015)
Gwinner, J., Ovcharova, N.: A Gårding inequality based unified approach to various classes of semi-coercive variational inequalities applied to non-monotone contact problems with a nested max-min superpotential. Minimax Theory Appl. 5(1), 103–128 (2020)
Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. AMS/IP Studies in Advanced Mathematics, vol. 30. American Mathematical Society/International Press, Providence (2002)
Hartman, P., Stampacchia, G.: On some non-linear elliptic differential-functional equations. Acta Math. 115, 271–310 (1966)
Hintermüller, M., Kovtunenko, V.A., Kunisch, K.: Obstacle problems with cohesion: a hemivariational inequality approach and its efficient numerical solution. SIAM J. Optim. 21, 491–516 (2011)
Kalmoun, E.M.: On Ky Fan’s minimax inequalities, mixed equilibrium problems and hemivariational inequalities. JIPAM. J. Inequal. Pure Appl. Math. 2, Article ID 12 (2001)
Kneser, H.: Sur un théorème fondamental de la théorie des jeux. C. R. Acad. Sci. Paris 234, 2418–2420 (1952)
Kufner, A., John, O., Fučik, S.: Function Spaces. Academia, Prague (1977)
Liu, Z.: Browder–Tikhonov regularization of non-coercive evolution hemivariational inequalities. Inverse Probl. 21, 13–20 (2005)
Maugeri, A., Raciti, F.: On existence theorems for monotone and nonmonotone variational inequalities. J. Convex Anal. 16, 899–911 (2009)
Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. Springer, New York (2013)
Minty, G.J.: On the generalization of a direct method of the calculus of variations. Bull. Am. Math. Soc. 73, 315–321 (1967)
Moré, J.J.: Coercivity conditions in nonlinear complementarity problems. SIAM Rev. 16, 1–16 (1974)
Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Dekker, New York (1995)
Nesemann, L., Stephan, E.P.: Numerical solution of an adhesion problem with FEM and BEM. Appl. Numer. Math. 62, 606–619 (2012)
Ovcharova, N.: On the coupling of regularization techniques and the boundary element method for a hemivariational inequality modelling a delamination problem. Math. Methods Appl. Sci. 40, 60–77 (2017)
Ovcharova, N., Banz, L.: Coupling regularization and adaptive hp-BEM for the solution of a delamination problem. Numer. Math. 137, 303–337 (2017)
Ovcharova, N., Gwinner, J.: A study of regularization techniques of nondifferentiable optimization in view of application to hemivariational inequalities. J. Optim. Theory Appl. 162(3), 754–778 (2014)
Ovcharova, N., Gwinner, J.: On the discretization of pseudomonotone variational inequalities with an application to the numerical solution of the nonmonotone delamination problem. In: Rassias, T.M., et al. (eds.) Optimization in Science and Engineering, pp. 393–405. Springer, New York (2014)
Panagiotopoulos, P.D.: Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer, Berlin (1993)
Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Application – Convex and Nonconvex Energy Functions. Birkhäuser, Basel (1998)
Papageorgiou, N.S., Radulescu, V.D., Repovs, D.: Nonlinear Analysis – Theory and Methods. Springer Monographs in Mathematics. Springer, Cham (2019)
Park, S.: Evolution of the 1984 KKM theorem of Ky Fan. Fixed Point Theory Appl. 2012, 146 (2012)
Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact. Lecture Notes in Physics, vol. 655. Springer, Berlin (2004)
Simons, S.: Minimax and variational inequalities. Are they of fixed-point or Hahn–Banach type? Game theory and mathematical economics. In: Proc. Semin., Bonn/Hagen, 1980, pp. 379–388 (1981)
Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Note Series, vol. 398. Cambridge University Press, Cambridge (2012)
Sofonea, M., Migórski, S.: Variational-Hemivariational Inequalities with Applications. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2018)
Stampacchia, G.: Variational inequalities, theory and applications of monotone operators. In: Proc. NATO Advanced Study Inst., Venice, Oderisi-Gubbio, pp. 101–192 (1969)
Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B Nonlinear Monotone Operators. Springer, New York (1990) Translated from the German by the author, Boron, Leo F.