From soft to superhard: Fifty years of experiments on cold-compressed graphite

Journal of Superhard Materials - Tập 34 Số 6 - Trang 360-370 - 2012
Y. Wang1, Kanani K. M. Lee2
1Oakland University
2Yale University

Tóm tắt

Từ khóa


Tài liệu tham khảo

Caroll, B. and Ostlie, D., An Introduction to Modern Astrophysics, San Francisco, California: Benjamin-Cummings Publishing Company, 2007.

Harper, H.A., Rodwell, V.W., and Mayes, P.A., Review of Physiological Chemistry, Los Altos, California: Lange Medi-cal Publications, 1977, p. 681.

Cao, M. and Woodward, F.I., Dynamic Responses of Terrestrial Ecosystem Carbon Cycling to Global Climate Change, Nature, 1998, vol. 393, no. 6682, pp. 249–252.

Brown, M.A., Levine, M.D., Short, W., and Koomey, J.G., Scenarios for a Clean Energy Future, Energy Policy, 2001, vol. 29, no. 14, pp. 1179–1196.

Neves, A.J. and Nazaré, M.H., Properties, Growth and Applications of Diamond, London, UK: Institution of Engineering and Technology, 2001, pp. 142–147.

Pan, L. and Kania, D., Diamond: Electronic Properties and Applications, Boston: Kluwer 1995.

Chung, D.D.L., Review Graphite, J. Mater. Sci., 2002, vol. 37, no. 8, pp. 1475–1489.

Pierson, H.O., Handbook of Carbon, Graphite, Diamond and Fullerenes, Park Ridge, New Jersey: Noyes Publications, 1993.

Bovenkerk, H.P., Bundy, F.P., Hall, H.T., Strong, H.M., and Wentorf, R.H., Preparation of Diamond, Nature, 1959, vol. 184, no. 4693, pp. 1094–1098.

Carlson, R.W., The Mantle and Core, New York: Elsevier, 2005, p. 248.

Bundy, F.P., Hall, H.T., Strong, H.M., and Wentorf, R.H., Jr., Man-Made Diamonds, Nature, 1955, vol. 176, no. 4471, pp. 51–55.

Frondel, C. and Marvin, U.B., Lonsdaleite, a Hexagonal Polymorph of Diamond, ibid., 1967, vol. 214, no. 5088, pp. 587–589.

Bundy, F.P. and Kasper, J.S., Hexagonal Diamond-A New Form of Carbon, J. Chem. Phys., 1967, vol. 46, no. 9, pp. 3437–3446.

Boulfelfel, S.E., Zhu, Q., and Oganov, A.R., Novel sp3-Forms of Carbon Predicted by Evolutionary Metadynamics and Analysis of Their Synthesizability Using Transition Path Sampling, J. Superhard Mater., 2012, vol. 34, no. 6, pp. 350–359.

He, C., Sun, L.Z., and Zhong, J., Prediction of Superhard Carbon Allotropes from a Segment Combination Method, ibid., 2012, vol. 34, no. 6, pp. 386–399.

Wang, Y., Panzik, J.E., Kiefer, B., and Lee, K.K.M., Crystal Structure of Graphite Under Room-Temperature Compression and Decompression, Sci. Reports, 2012, vol. 2, art. 520.

Lin, Y., Zhang, L., Mao, H.K., Chow, P., Xiao, Y., Baldini, M., Shu, J. and Mao, W.L., Amorphous Diamond: A High-Pressure Superhard Carbon Allotrope, Phys. Rev. Lett., 2011, vol. 107, no. 17, art. 175504.

Wang, Z., Zhao, Y., Tait, K., Liao, X., Schiferl, D., Zha, C., Downs, R.T., Qian, J., Zhu, Y. and Shen, T., A Quenchable Superhard Carbon Phase Synthesized by Cold Compression of Carbon Nanotubes, PNAS, 2004, vol. 101, no. 3, pp. 13699–13703.

Brazhkin, V.V. and Lyapin, A.G., Hard and Superhard Carbon Phases Synthesized from Fullerites under Pressure, J. Superhard Mater., 2012, vol. 34, no. 6, pp. 400–423.

Kurio, A., Tanaka, Y., Sumiya, H., Irifune, T., Shinmei, T., Ohfuji, H. and Kagi, H., Wear Resistance of Nano-Polycrystalline Diamond with Various Hexagonal Diamond Contents, ibid., 2012, vol. 34, no. 6, pp. 343–349.

Zhao, Z., Zhou, X.-F., Hu, M., Yu, D., He, J., Wang, H.-T., Tian, Y. and Xu, B., High-Pressure Behaviors of Carbon Nanotubes, ibid., 2012, vol. 34, no. 6, pp. 371–385.

Bundy, F.P., The p, T Phase and Reaction Diagram for Elemental Carbon, 1979, J. Geophysical Res., 1980, vol. 85, no. B12, pp. 6930–6936.

Clarke, R. and Uher, C., High-Pressure Properties of Graphite and Its Intercalation Compounds, Adv. Phys., 1984, vol. 33, no. 5, pp. 469–566.

Bundy, F.P., Bassett, W.A., Weathers, M.S., Hemley, R.J., Mao, H.K., and Goncharov, A.F., Review Article: The Pressure-Temperature Phase and Transformation Diagram for Carbon; Updated through 1994, Carbon, 1996, vol. 34, no. 2, pp. 141–153.

Badding, J.V. and Lueking, A.D., Reversible High Pressure sp2-sp3 Transformations in Carbon, Phase Transitions, 2007, vol. 80, nos. 10–12, pp. 1033–1038.

Samara, G.A. and Drickamer, H.G., Effect of Pressure on Resistance of Pyrolytic Graphite, J. Chem. Phys., 1962, vol. 37, no. 3, pp. 471–474.

Balchan, A.S. and Drickamer, H.G., High Pressure Electrical Resistance Cell, and Calibration Points above 100 Kilobars, Review of Scientific Instruments, 1960, vol. 32, no. 3, pp. 308–313.

Aust, R.B. and Drickamer, H.G., Carbon—A New Crystalline Phase, Science, 1963, vol. 140, no. 3568, pp. 817–819.

Okuyama, N., Yasunaga, H., Minomura, S., and Takeya, K., Dependence of the Resistance on Pressure in the c-Direction of Pyrolytic and Natural Graphite, Jpn. J. Appl. Phys., 1971, vol. 10, no. 11, pp. 1645–1646.

Li, X. and Mao, H.K., Solid Carbon at High Pressure: Electrical Resistivity and Phase Transition, Phys. Chem. Mine-rals, 1994, vol. 21, no. 1, pp. 1–5.

Liebermann, R. and Wang, Y., Characterization of Sample Environment in a Uniaxial Split-Sphere Apparatus, in High-Pressure Research: Application to Earth and Planetary Sciences, Syono, Y. and Manghnani, M.N., Eds., Washington, DC: Am. Geophys. Un., 1992, pp. 19–31.

Mao, H.K. and Bell, P.M., Techniques of Electrical Conductivity Measurement to 300 Kbar, New York, United States: Academic, 1977, pp. 493–502.

Montgomery, J.M., Kiefer, B. and Lee, K.K.M., Determining the High-Pressure Phase Transition in Highly-Ordered Pyrolitic Graphite with Time-Dependent Resistance Measurements, J. Appl. Phys., 2011, vol. 110, no. 4, art. 043725.

Utsumi, W. and Yagi, T., Light-Transparent Phase Formed by Room-Temperature Compression of Graphite, Science, 1991, vol. 252, no. 5012, pp. 1542–1544.

Goncharov, A.F., Makarenko, I.N., and Stishov, S.M., Graphite at Pressures up to 55 GPa: Optical Properties and Raman Spectra, High Press. Res., 1990, vol. 4, nos. 1–6, pp. 345–347.

Goncharov, A.F., Makarenko, I.N., and Stishov, S.M., Graphite at Pressures up to 55 GPa: Optical Properties and Raman Scattering—Amorphous Carbon? Sov. Phys. JETP, 1989, vol. 69, no. 2, pp. 380–381.

Goncharov, A.F., Observation of Amorphous Phase of Carbon at Pressures above 23 GPa, JETP Lett., 1990, vol. 51, no. 7, pp. 418–421.

Hanfland, M., Syassen, K., and Sonnenschein, R., Optical Reflectivity of Graphite under Pressure, Phys. Rev. B, 1989, vol. 40, no. 3, pp. 1951–1954.

Miller, E.D., Nesting, D.C. and Badding, J.V., Quenchable Transparent Phase of Carbon, Chem. Mater., 1997, vol. 9, no. 1, pp. 18–22.

Mao, W.L., Mao, H., Eng, P.J., Trainor, T.P., Newville, M., Kao, C., Heinz, D.L., Shu, J., Meng, Y. and Hemley, R.J., Bonding Changes in Compressed Superhard Graphite, Science, 2003, vol. 302, no. 5644, pp. 425–427.

Xu, J., Mao, H. and Hemley, R., The Gem Anvil Cell: High-Pressure Behavior of Diamond and Related Materials, J. Phys: Condens. Matter, 2002, vol. 14, no. 44, pp. 11549–11552.

Hanfland, M., Beister, H., and Syassen, K., Graphite under Pressure: Equation of State and First-Order Raman Modes, Phys. Rev. B, 1989, vol. 39, no. 17, pp. 12598–12603.

Liu, Z., Wang, L., Zhao, Y., Cui, Q. and Zou, G., High-Pressure Raman Studies of Graphite and Ferric Chloride-Graphite, J. Phys.: Condens. Matter, 1990, vol. 2, no. 40, pp. 8083–8088.

Schindler, T. and Vohra, Y.K., A Micro-Raman Investigation of High-Pressure Quenched Graphite, ibid., 1995, vol. 7, no. 47, pp. L637–L642.

Loa, I., Moschel, C., Reich, A., Assenmacher, W., Syassen, K., and Jansen, M., Novel Graphitic Spheres: Raman Spectroscopy at High Pressures, Phys. Stat. Sol. (b), 2001, vol. 223, no. 1, pp. 293–298.

Pocsik, I., Hundhausen, M., Koos, M., and Ley, L., Origin of the D Peak in the Raman Spectrum of Microcrystalline Graphite, J. Non-Cryst. Solids, 1998, vol. 227–230, no. 2, pp. 1083–1086.

Ferrari, A.C. and Robertson, J., Interpretation of Raman Spectra of Disordered and Amorphous Carbon, Phys. Rev. B, 2000, vol. 61, no. 20, pp. 14095–14107.

Zhao, Y.X. and Spain, I.L., X-ray Diffraction Data for Graphite to 20 GPa, ibid., 1989, vol. 40, no. 2, pp. 993–997.

Yagi, T., Utsumi, W., Yamakata, M., Kikegawa, T., and Shimomura, O., High-Pressure in situ X-ray Diffraction Study of the Phase Transfromation from Graphite Pyrolitic to Hexagonal Diamond at Room Temperature, ibid., 1992, vol. 46, no. 10, pp. 6031–6039.

Lynch, R.W. and Drickamer, H.G., Effect of High Pressure on the Lattice Parameters of Diamond, Graphite, and Hexagonal Boron Nitride, J. Chem. Phys., 1966, vol. 44, no. 1, pp. 181–184.

Kim, Y. and Na, K., High Pressure X-Ray Diffraction Study on a Graphite Using Synchrotron Radiation, J. Petrol. Soc. Korea, 1994, vol. 3, no. 1, pp. 34–40.

Umemoto, K., Wentzcovitch, R.M., Saito, S., and Miyake, T., Body-Centered Tetragonal C4: A Viable sp3 Carbon Allotrope, Phys. Rev. Lett., 2010, vol. 104, no. 12, art. 125504.

He, C., Sun, L.Z., Zhang, C.X., Zhang, K.W., Peng, X., and Zhong, J., New Superhard Carbon Phases Between Graphite and Diamond, Solid State Comm., 2012, vol. 152, no. 16, pp. 1560–1563.

Itoh, M., Kotani, M., Naito, H., Sunada, T., Kawazoe, Y., and Adschiri, T., New Metallic Carbon Crystal, Phys. Rev. Lett., 2009, vol. 102, no. 5, art. 055703.

Li, Q., Ma, Y., Oganov, A.R., Wang, H., Wang, H., Xu, Y., Cui, T., Mao, H.K., and Zou, G., Superhard Monoclinic Polymorph of Carbon, ibid., 2009, vol. 102, no. 17, art. 175506.

Oganov, A.R. and Glass, C.W., Crystal Structure Prediction Using Ab Initio Evolutionary Techniques: Principles and Applications, J. Chem. Phys., 2006, vol. 124, no. 24, art. 244704.

Niu, H., Chen, X., Wang, S., Li, D., Mao, W.L. and Li, Y., Families of Superhard Crystalline Carbon Allotropes Constructed via Cold Compression of Graphite and Nanotubes, Phys. Rev. Lett., 2012, vol. 108, no. 13, art. 135501.

Sheng, X.L., Yan, Q.B., Ye, F., Zheng, Q.R., and Su, G., T-Carbon: A Novel Carbon Allotrope, ibid., 2011, vol. 106, no. 15, art. 155703.

Wang, J.T., Chen, C., and Kawazoe, Y., Low-Temperature Phase Transformation from Graphite to sp3 Orthorhombic Carbon, ibid., 2011, vol. 106, no. 7, art. 075501.

Amsler, M., Flores-Livas, J.A., Lehtovaara, L., Balima, F., Ghasemi, S.A., Machon, D., Pailhès, S., Willand, A., Caliste, D., Botti, S., Miguel, A.S., Goedecker, S., and Marques, M.A.L., Crystal Structure of Cold Compressed Graphite, ibid., 2012, vol. 108, no. 6, art. 065501.

Wang, J.T., Chen, C.F., and Kawazoe, Y., Orthorhombic Carbon Allotrope of Compressed Graphite: Ab Initio Calculations, Phys. Rev. B, 2012, vol. 85, no. 3, art. 033410.

Birch, F., Finite Strain Isotherm and Velocities for Single-Crystal and Polycrystalline NaC1 at High Pressures and 300 K, J. Geophys. Res., 1978, vol. 83, no. B3, pp. 1257–1268.

Murnaghan, F.D., Finite Deformations of an Elastic Solid, Amer. J. Math., 1937, vol. 59, no. 2, pp. 235–260.

Jeanloz, R., Finite-Strain Equation of State for High-Pressure Phases, Geophys. Res. Lett., 1981, vol. 8, no. 12, pp. 1219–1222.

Xu, H., Zhao, Y., Zhang, J., Wang, Y., Hickmott, D.D., Daemen, I.I., Hartl, M.A., and Wang, L., Anisotropic Elasticity of Jarosite: A High-P Synchrotron XRD Study, Am. Mineral., 2010, vol. 95, no. 1, pp. 19–23.

Nakayama, A., Iijima, S., Koga, Y., Shimizu, K., Hirahara, K., and Kokai, F., Compression of Polyhedral Graphite up to 43 GPa and X-Ray Diffraction Study on Elasticity and Stability of the Graphite Phase, Appl. Phys. Lett., 2004, vol. 84, no. 25, pp. 5112–5114.

Goncharov, A.F., Crowhurst, J.C., Dewhurst, J.K., Sharma, S., Sanloup, C., Gregoryanz, E., Guignot, N., and Mezouar, M., Thermal Equation of State of Cubic Boron Nitride: Implications for a High-Temperature Pressure Scale, Phys. Rev. B, 2007, vol. 75, no. 22, art. 224114.

Wang, Y., Zhang, J., Daemen, L.L., Lin, Z., Zhao, Y. and Wang, L., Thermal Equation of State of Rhenium Diboride by High Pressure-Temperature Synchrotron X-Ray Studies, ibid., 2008, vol. 78, no. 22, art. 224106.

Boulfelfel, S.E., Oganov, A.R., and Leoni, S., Understanding the Nature of “Superhard Graphite”, Sci. Rep., 2012, vol. 22, art. 471.

NRL, The Diamond (A4) Crystal Structure, 2008.

Occelli, F., Loubeyre, P., and Letoullec, R., Properties of Diamond under Hydrostatic Pressures up to 140 GPa, Nature Mater., 2003, vol. 2, no. 3, pp. 151–154.

Liang, Y., Zhang, W., and Chen, L., Phase Stabilities and Mechanical Properties of Two New Carbon Crystals, EPL,2009, vol. 87, no. 5, art. 56003.