From restoration by topological gradient to medical image segmentation via an asymptotic expansion

Mathematical and Computer Modelling - Tập 49 - Trang 2191-2205 - 2009
Didier Auroux1
1Institut de Mathématiques de Toulouse, UMR 5219, Université Paul Sabatier Toulouse 3, 31062 Toulouse cedex 9, France

Tài liệu tham khảo

Alessandrini, 1996, Unique determination of multiple cracks by two measurements, SIAM J. Control Optim., 34, 913, 10.1137/S0363012994262853 Ammari, 2001, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II - The full Maxwell equations, J. Math. Pure Appl., 80, 769, 10.1016/S0021-7824(01)01217-X Amstutz, 2005, Crack detection by the topological gradient method, Control Cybern., 34, 119 Amstutz, 2003, The topological asymptotic for the Helmoltz equation, SIAM J. Control Optim., 42, 1523, 10.1137/S0363012902406801 Andrieux, 1996, Identification of planar cracks by complete overdetermined data: Inversion formulae, Inverse Problems, 12, 553, 10.1088/0266-5611/12/5/002 Aubert, 2001, vol. 147 Auroux, 2007, A topological asymptotic analysis for the regularized grey-level image classification problem, Math. Model. Numer. Anal., 41, 607, 10.1051/m2an:2007027 Auroux, 2006, A one-shot inpainting algorithm based on the topological asymptotic analysis, Comput. Appl. Math., 25, 1 Belhachmi, 2007, Stability and uniqueness for the crack identification problem, SIAM J. Control Optim., 46, 253, 10.1137/S0363012904441179 Ben Abda, 1999, Identification of 2D cracks by elastic boundary measurements, Inverse Problems, 15, 67, 10.1088/0266-5611/15/1/011 Ben Abda, 2002, Line-segment cracks recovery from incomplete boundary data, Inverse Problems, 18, 1057, 10.1088/0266-5611/18/4/308 Blake, 1998 Bruhl, 2001, Crack detection using electrostatic measurements, Math. Model. Numer. Anal., 35, 595, 10.1051/m2an:2001128 K. Bryan, M.S. Vogelius, A review of selected works on crack identification, in: Proceedings of the IMA workshop on Geometric Methods in Inverse Problems and PDE Control, August 2001 A.P. Calderón, On an inverse boundary value problem, in: Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, Brasil, 1980, pp. 65–73 Catté, 1992, Image selective smoothing and edge detection by non linear diffusion, SIAM J. Numer. Anal., 29, 182, 10.1137/0729012 Duncan, 2000, Medical image analysis: Progress over two decades and the challenges ahead, IEEE Trans. Pattern Anal. Mach. Intell., 22, 85, 10.1109/34.824822 Friedman, 1989, Determining cracks by boundary measurements, Indiana Univ. Math. J., 38, 527, 10.1512/iumj.1989.38.38025 Friedman, 1989, Identification of small inhomogeneities of extreme conductivity by boundary measurements: A theorem of continuous dependence, Arch. Ration. Mech. Anal., 105, 299, 10.1007/BF00281494 Garreau, 2001, The topological asymptotic for PDE systems: The elasticity case, SIAM J. Control Optim., 39, 1756, 10.1137/S0363012900369538 Guillaume, 2002, From compressible to incompressible materials via an asymptotic expansion, Numer. Math., 91, 649, 10.1007/s002110100347 Guillaume, 2002, The topological asymptotic expansion for the Dirichlet problem, SIAM J. Control Optim., 41, 1042, 10.1137/S0363012901384193 Guillaume, 2004, The topological sensitivity and shape optimization for the Stokes equations, SIAM J. Control Optim., 43, 1, 10.1137/S0363012902411210 Jaafar Belaid, 2006, Image restoration and edge detection by topological asymptotic expansion, C. R. Acad. Sci. Sér. I, 342, 313 L. Jaafar Belaid, M. Jaoua, M. Masmoudi, L. Siala, Application of the topological gradient to image restoration and edge detection, Eng. Anal. Bound. Elem. (2008) (in press) Kohn, 1987, Relaxation of a variational method for impedance computed tomography, Commun. Pure Appl. Math., 40, 745, 10.1002/cpa.3160400605 Kubo, 1990, Inverse problems and the electric potential computed tomography method as one of their application M. Masmoudi, The topological asymptotic, Computational Methods for Control Applications, in: R. Glowinski, H. Karawada, J. Periaux (Eds.), GAKUTO Internat. Ser. Math. Sci. Appl. vol. 16, Tokyo, Japan, 2001, pp. 53–72 T. McInerney, D. Terzopoulos, Medical image segmentation using topologically adaptable surfaces, in: Proc. CVRMed’97, Grenoble, France, 1997 Mumford, 1989, Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math., 42, 577, 10.1002/cpa.3160420503 Nishimura, 1991, A boundary integral equation method for an inverse problem related to crack detection, Internat. J. Numer. Methods Engrg., 32, 1371, 10.1002/nme.1620320702 Perona, 1990, Scale space and Edge detection detection using Anisotropic diffusion, IEEE Trans. Pattern Analy. Mach. Intell., 12, 629, 10.1109/34.56205 D.L. Pham, C. Xu, J.L. Prince, A survey of current methods in medical image segmentation, Tech. Report Johns Hopkins Univ., JHU/ECE 99-01 (1999) Samet, 2003, The topological asymptotic for the helmholtz equation, SIAM J. Control Optim., 42, 1523, 10.1137/S0363012902406801 Santosa, 1991, A computational algorithm to determine cracks from electrostatic boundary measurements, Internat. J. Engrg. Sci., 29, 917, 10.1016/0020-7225(91)90166-Z Sethian, 1999, Level set methods and fast marching methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials sciences Sokolowski, 2002, Topological derivatives of shape functionals for elasticity systems, Internat. Ser. Numer. Math, 139, 231 Wei, 2004, A fast snake model based on non-linear diffusion for medical image segmentation, Comput. Med. Imaging Graph., 28, 109, 10.1016/j.compmedimag.2003.12.002 Weickert, 1996, Theoretical foundations of anisotropic diffusion in image processing, Computing, Suppl., 11, 221, 10.1007/978-3-7091-6586-7_13 J. Weickert, Anisotropic diffusion in image processing, Ph.D. Thesis, University of Kaiserslautern, Germany, 1996 Weickert, 2001, Efficient image segmentation using partial differential equations and morphology, Pattern Recognit., 34, 1813, 10.1016/S0031-3203(00)00109-6 Yezzi, 1997, A Geometric Snake Model for Segmentation of Medical Imagery, IEEE Trans. Med. Imaging, 16, 199, 10.1109/42.563665