From SAT to SAT-UNSAT using P systems with dissolution rules

Agustín Riscos–Núñez1, Luis Valencia-Cabrera1
1Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Seville, Spain

Tóm tắt

Abstract

DP is the class of problems that are the differences between two languages from NP. Most difficult problems from DP are called DP-complete problems, that can be seen as the conjunction of an NP-complete problem and a co-NP-complete problem. It is easy to see that the problem P vs NP is equivalent to the problem P vs DP, and therefore DP-complete problems would be better candidates to attack the conjecture, since they seem to be harder than NP-complete problems. In this paper, a methodology to transform an efficient solution of an NP-complete problem into an efficient solution of a DP-complete problem is applied. More precisely, a solution to is given by means of a uniform family of recognizer polarizationless P systems with active membranes with dissolution rules and division rules for both elementary and non-elementary membranes, and later it is transformed into a solution to the problem -.

Từ khóa


Tài liệu tham khảo

Alhazov, A., & Pérez-Jiménez, M. J. (2007). Uniform solution of QSAT using polarizationless active membranes. In J. Durand-Lose & M. Margenstern (Eds.), Machines, Computations, and Universality (pp. 122–133). Berlin Heidelberg, Berlin, Heidelberg: Springer.

Cai, J. Y., Gundermann, T., Hartmanis, J., Hemachandra, L. A., Sewelson, V., Wagner, K., & Wechsung, G. (1988). The boolean hierarchy i: Structural properties. SIAM Journal on Computing, 17(6), 1232–1252. https://doi.org/10.1137/0217078.

Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA (1990)

Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Riscos-Núñez, A., & Romero-Campero, F. J. (2006). On the power of dissolution in p systems with active membranes. In R. Freund, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane Computing (pp. 224–240). Berlin Heidelberg, Berlin, Heidelberg: Springer.

Leporati, A., Manzoni, L., Mauri, G., Porreca, A., & Zandron, C. (2020). Subroutines in P systems and closure properties of their complexity classes. Theoretical Computer Science, 805, 193–205.

Leporati, A., Manzoni, L., Mauri, G., Porreca, A., & Zandron, C. (2020). A Turing machine simulation by P systems without charges. Journal of Membrane Computing, 2, 71–79.

Macías-Ramos, L.F., Pérez-Jiménez, M.J., Riscos-Núñez, A., Valencia-Cabrera, L.: Membrane fission versus cell division: When membrane proliferation is not enough. Theoretical Computer Science 608, 57 – 65 (2015). doi: 10.1016/j.tcs.2015.06.025. http://www.sciencedirect.com/science/article/pii/S0304397515005356

Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, A., & Pérez-Jiménez, M. (2019). Membrane creation in polarizationless P systems with active membranes. Fundamenta Informaticae, 171(1–4), 297–311.

Pan, L., Orellana-Martín, D., Song, B., Pérez-Jiménez, M.J.: Cell-like P systems with polarizations and minimal rules. Theoretical Computer Science 816, 1 – 18 (2020). doi: 10.1016/j.tcs.2019.10.001. http://www.sciencedirect.com/science/article/pii/S0304397519306231

Papadimitriou, C., Yannakakis, M.: The complexity of facets (and some facets of complexity). Journal of Computer and System Sciences 28(2), 244 – 259 (1984). doi: 10.1016/0022-0000(84)90068-0. http://www.sciencedirect.com/science/article/pii/0022000084900680

Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)

Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108 – 143 (2000). doi: 10.1006/jcss.1999.1693. http://www.sciencedirect.com/science/article/pii/S0022000099916938

Păun, G. (2001). Computing with membranes: Attacking NP-complete problems. In I. Antoniou, C. S. Calude, & M. J. Dinneen (Eds.), Unconventional Models of Computation, UMC2K (pp. 94–115). London, London: Springer.

Păun, G., Rozenberg, G., & Salomaa, A. (2010). The Oxford Handbook of Membrane Computing. USA: Oxford University Press Inc.

Pérez-Jiménez, M. J., Romero-Jiménez, A., & Sancho-Caparrini, F. (2003). Complexity classes in models of cellular computing with membranes. Natural Computing, 2(3), 265–285. https://doi.org/10.1023/A:1025449224520.

Pérez Jiménez, M. J., Romero Jiménez, Á., & Sancho Caparrini, F. (2003). Decision P systems and the P $$\ne$$ NP conjecture. In G. Păun, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.), Membrane Computing (pp. 388–399). Berlin Heidelberg, Berlin, Heidelberg: Springer.

Song, B., Li, K., Orellana-Martín, D., Valencia-Cabrera, L., Pérez-Jiménez, M.J.: Cell-like P systems with evolutional symport/antiport rules and membrane creation. Information and Computation p. 104542 (2020). doi: 10.1016/j.ic.2020.104542. http://www.sciencedirect.com/science/article/pii/S0890540120300304

Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.: From NP-completeness to DP-completeness: A membrane computing perspective. Complexity 2020(6765097), 10 pages (2020)

Wechsung, G. (1985). On the Boolean closure of NP. In L. Budach (Ed.), Fundamentals of Computation Theory (pp. 485–493). Berlin Heidelberg, Berlin, Heidelberg: Springer.