From Individual to Group Privacy in Big Data Analytics

Philosophy & Technology - Tập 30 Số 4 - Trang 475-494 - 2017
Brent Mittelstadt1
1Oxford Internet Institute, University of Oxford, Oxford, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ajunwa, I., Friedler, S., Scheidegger, C. E., & Venkatasubramanian, S. (2016). Hiring by algorithm: predicting and preventing disparate impact. SSRN Scholarly Paper ID 2746078. Rochester: Social Science Research Network http://papers.ssrn.com/abstract=2746078 .

Altman, I. (1977). Privacy regulation: culturally universal or culturally specific? Journal of Social Issues, 33(3), 66–84.

Ananny, M. (2016). Toward an ethics of algorithms convening, observation, probability, and timeliness. Science, Technology & Human Values, 41(1), 93–117. doi: 10.1177/0162243915606523 .

Barocas, Solon. 2014. Data mining and the discourse on discrimination. https://dataethics.github.io/proceedings/DataMiningandtheDiscourseOnDiscrimination.pdf .

Barocas, Solon, and Andrew D. Selbst. 2015. Big data’s disparate impact. SSRN Scholarly Paper ID 2477899. Rochester: Social Science Research Network. http://papers.ssrn.com/abstract=2477899 .

Bisaz, Corsin. 2012. The concept of group rights in international law: groups as contested right-holders, subjects and legal persons. Martinus Nijhoff.

Bloustein, E. J. (1976). Group privacy: the right to huddle. Rutgers Camden Law Journal, 8, 219.

Burrell, J. (2016). How the machine “thinks:” understanding opacity in machine learning algorithms. Big Data & Society. doi: 10.1177/2053951715622512 .

Calders, Toon, Faisal Kamiran, and Mykola Pechenizkiy. 2009. Building classifiers with independency constraints. In Data Mining Workshops, 2009. ICDMW’09. IEEE International Conference on, 13–18. IEEE.

Cohen, I. G., Amarasingham, R., Shah, A., Xie, B., & Lo, B. (2014). The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Affairs, 33(7), 1139–1147. doi: 10.1377/hlthaff.2014.0048 .

Crawford, K., Gray, M. L., & Miltner, K. (2014). Critiquing big data: politics, ethics, epistemology | special section introduction. International Journal of Communication, 8, 10.

Danna, A., & Gandy Jr., O. H. (2002). All that glitters is not gold: digging beneath the surface of data mining. Journal of Business Ethics, 40(4), 373–386.

European Commission. 2012. Regulation of the European Parliament and of the Council on the Protection of Individuals with Regard to the Processing of Personal Data and on the Free Movement of Such Data (General Data Protection Regulation). COM(2012) 11 final. Brussels: European Commission. http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf .

Floridi, L. (2006). Four challenges for a theory of informational privacy. Ethics and Information Technology, 8(3), 109–119.

Floridi, L. (2008). The method of levels of abstraction. Minds and Machines, 18(3), 303–329. doi: 10.1007/s11023-008-9113-7 .

Floridi, L. (2011). The informational nature of personal identity. Minds and Machines, 21(4), 549–566. doi: 10.1007/s11023-011-9259-6 .

Floridi, L. (2012). Big data and their epistemological challenge. Philosophy & Technology, 25(4), 435–437. doi: 10.1007/s13347-012-0093-4 .

Floridi, L. (2013a). The ethics of information. Oxford: OUP Oxford.

Floridi, Luciano. 2013b. The philosophy of information. Reprint edition. OUP Oxford. Oxford.

Floridi, L. (2014). Open data, data protection, and group privacy. Philosophy & Technology, 27(1), 1–3. doi: 10.1007/s13347-014-0157-8 .

Floridi, Luciano. 2016a. Three problems with group privacy and their solutions. In Group privacy: new challenges of data technologies. Vol. forthcoming. Philosophical Studies. New York: Springer.

Floridi, L. (2016b). Mature information societies—a matter of expectations. Philosophy & Technology, 29(1), 1–4. doi: 10.1007/s13347-016-0214-6 .

French, P. A. (1984). Corporate and collective responsibility. New York: Columbia University Press.

Grindrod, P. (2014). Mathematical underpinnings of analytics: theory and applications. Oxford: OUP Oxford.

Harcourt, Bernard E.. 2006. Against prediction: profiling, policing, and punishing in an actuarial age. University of Chicago Press. http://bibliovault.org/BV.landing.epl?ISBN=9780226316147 .

Hildebrandt, Mireille. 2008. Defining profiling: a new type of knowledge? In Profiling the European citizen, edited by Mireille Hildebrandt and Serge Gutwirth, 17–45. Springer Netherlands. http://link.springer.com/chapter/10.1007/978-1-4020-6914-7_2 .

Hildebrandt, M. (2011). Who needs stories if you can get the data? ISPs in the era of big number crunching. Philosophy & Technology, 24(4), 371–390. doi: 10.1007/s13347-011-0041-8 .

Jones, Peter. 2016. Group rights. In The Stanford encyclopedia of philosophy, Summer 2016 Edition (forthcoming). http://plato.stanford.edu/archives/sum2016/entries/rights-group/ .

Kamiran, Faisal, and Toon Calders. 2010. Classification with no discrimination by preferential sampling. In Proc. 19th Machine Learning Conf. Belgium and The Netherlands. http://wwwis.win.tue.nl/~tcalders/pubs/benelearn2010 .

Kroll, J. A., Huey, J., Barocas, S., Felten, E. W., Reidenberg, J. R., Robinson, D. G., & Harlan, Y. (2016). Accountable algorithms. SSRN Scholarly Paper ID 2765268. Rochester: Social Science Research Network http://papers.ssrn.com/abstract=2765268 .

Laurie, Graeme, Kerina H. Jones, Leslie Stevens, and Christine Dobbs. 2014. A review of evidence relating to harm resulting from uses of health and biomedical data. Nuffield Council on Bioethics. http://nuffieldbioethics.org/wp-content/uploads/FINAL-Report-on-Harms-Arising-from-Use-of-Health-and-Biomedical-Data-30-JUNE-2014.pdf .

Leese, M. (2014). The new profiling: algorithms, black boxes, and the failure of anti-discriminatory safeguards in the European Union. Security Dialogue, 45(5), 494–511. doi: 10.1177/0967010614544204 .

Lisboa, Paulo JG. 2013. Interpretability in machine learning—principles and practice. In Fuzzy logic and applications, 15–21. Springer. http://link.springer.com/chapter/10.1007/978-3-319-03200-9_2 .

List, C., & Pettit, P. (2011). Group agency: the possibility, design, and status of corporate agents. Oxford: Oxford University Press.

Lupton, D. (2014). The commodification of patient opinion: the digital patient experience economy in the age of big data. Sociology of Health & Illness, 36(6), 856–869. doi: 10.1111/1467-9566.12109 .

Macnish, K. (2012). Unblinking eyes: the ethics of automating surveillance. Ethics and Information Technology, 14(2), 151–167. doi: 10.1007/s10676-012-9291-0 .

Mittelstadt, B. D., & Floridi, L. (2016). The ethics of big data: current and foreseeable issues in biomedical contexts. Science and Engineering Ethics, 22(2), 303–341. doi: 10.1007/s11948-015-9652-2 .

Mittelstadt, Brent, Patrick Allo, Mariarosaria Taddeo, Sandra Wachter, and Luciano Floridi. 2016. The ethics of algorithms: mapping the debate. Big Data & Society.

Natowicz, M. R., Alper, J. K., & Alper, J. S. (1992). Genetic discrimination and the law. American Journal of Human Genetics, 50(3), 465–475.

Newell, S., & Marabelli, M. (2015). Strategic opportunities (and challenges) of algorithmic decision-making: a call for action on the long-term societal effects of “datification”. The Journal of Strategic Information Systems, 24(1), 3–14. doi: 10.1016/j.jsis.2015.02.001 .

Nissenbaum, H. (2004). Privacy as contextual integrity. SSRN scholarly paper ID 534622. Rochester: Social Science Research Network http://papers.ssrn.com/abstract=534622 .

Romei, A., & Ruggieri, S. (2014). A multidisciplinary survey on discrimination analysis. The Knowledge Engineering Review, 29(05), 582–638. doi: 10.1017/S0269888913000039 .

Rubel, A., & Jones, K. M. L. (2014). Student privacy in learning analytics: an information ethics perspective. SSRN scholarly paper ID 2533704. Rochester: Social Science Research Network http://papers.ssrn.com/abstract=2533704 .

Rutherglen, G. (1987). Disparate impact under title VII: an objective theory of discrimination. Virginia Law Review, 73(7), 1297–1345. doi: 10.2307/1072940 .

Sandvig, Christian, Kevin Hamilton, Karrie Karahalios, and Cedric Langbort. 2014. Auditing algorithms: research methods for detecting discrimination on internet platforms. Data and discrimination: converting critical concerns into productive inquiry. http://social.cs.uiuc.edu/papers/pdfs/ICA2014-Sandvig.pdf .

Schermer, B. W. (2011). The limits of privacy in automated profiling and data mining. Computer Law & Security Review, 27(1), 45–52. doi: 10.1016/j.clsr.2010.11.009 .

Singer, P. (1993). Practical ethics. Cambridge: Cambridge University Press.

Taylor, Linnet, Luciano Floridi, and Bart van der Sloot, eds. 2017. Group privacy: new challenges of data technologies. 1st ed. Philosophical Studies. New York: Springer.

van der Sloot, B. (2014). Privacy in the Post-NSA Era: Time for a Fundamental Revision? http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2432104 .

Vedder, A. (1999). KDD: the challenge to individualism. Ethics and Information Technology, 1(4), 275–281.

Warren, S. D., & Brandeis, L. D. (1890). The right to privacy. Harvard Law Review, 4(5), 193–220. doi: 10.2307/1321160 .

Wellman, C. (1995). Real rights. New York: Oxford University Press.

Zarsky, Tal. 2013. Transparent predictions. University of Illinois Law Review 2013 (4). http://papers.ssrn.com/sol3/Papers.cfm?abstract_id=2324240 .

Zarsky, T. (2016). The trouble with algorithmic decisions an analytic road map to examine efficiency and fairness in automated and opaque decision making. Science, Technology & Human Values, 41(1), 118–132. doi: 10.1177/0162243915605575 .