From BoW to CNN: Two Decades of Texture Representation for Texture Classification
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.
Ahonen, T., Hadid, A., & Pietikäinen, M. (2006a). Face decription with local binary patterns: Application to face recognition. IEEE TPAMI, 28(12), 2037–2041.
Ahonen, T., Hadid, A., & Pietikainen, M. (2006b). Face description with local binary patterns: Application to face recognition. IEEE TPAMI, 28(12), 2037–2041.
Ahonen, T., & Pietikäinen, M. (2007). Soft histograms for local binary patterns. In Proceedings of the finnish signal processing symposium, (Vol. 5, p. 1).
Akl, A., Yaacoub, C., Donias, M., Da Costa, J., & Germain, C. (2018). A survey of exemplar based texture synthesis methods. In CVIU.
Alahi, A., Ortiz, R., & Vandergheynst, P. (2012). FREAK: Fast retina keypoint. In CVPR (pp. 510–517).
ALOT. (2009). http://aloi.science.uva.nl/public_alot/ . Accessed 16 Oct 2018.
Amadasun, M., & King, R. (1989). Textural features corresponding to textural properties. IEEE Transactions on Systems, Man, and Cybernetics, 19(5), 1264–1274.
Andrearczyk, V., & Whelan, P. (2016). Using filter banks in convolutional neural networks for texture classification. Pattern Recognition Letters, 84, 63–69.
Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., & Sivic, J. (2016). NetVLAD: CNN architecture for weakly supervised place recognition. In CVPR (pp. 5297–5307)
Baraniuk, R., Davenport, M., DeVore, R., & Wakin, M. (2008). A simple proof of the restricted isometry property for random matrices. Constructive Approximation, 28(3), 253–263.
Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF: Speeded up robust features. In ECCV (pp. 404–417)
Bell, S., Upchurch, P., Snavely, N., & Bala, K. (2013). Opensurfaces: A richly annotated catalog of surface appearance. ACM Transactions on Graphics, 32(4), 111.
Bell, S., Upchurch, P., Snavely, N., & Bala, K. (2015). Material recognition in the wild with the materials in context database. In CVPR (pp. 3479–3487).
Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE TPAMI, 35(8), 1798–1828.
Bhushan, N., Rao, A. R., & Lohse, G. L. (1997). The texture lexicon: Understanding the categorization of visual texture terms and their relationship to texture images. Cognitive Science, 21(2), 219–246.
Bormann, R., Esslinger, D., Hundsdoerfer, D., Haegele, M., & Vincze, M. (2016). Texture characterization with semantic attributes: Database and algorithm. In The 47th international symposium on robotics (pp. 1–8).
Bosch, A., Zisserman, A., & Muñoz, X. (2008). Scene classification using a hybrid generative/discriminative approach. IEEE TPAMI, 30(4), 712–727.
Boureau, Y., Ponce, J., & LeCun, Y. (2010). A theoretical analysis of feature pooling in visual recognition. In ICML (pp. 111–118).
Bovik, A., Clark, M., & Geisler, W. (1990). Multichannel texture analysis using localized spatial filters. IEEE TPAMI, 12(1), 55–73.
Brahnam, S., Jain, L., Nanni, L., & Lumini, A. (2014). Local binary patterns: New variants and applications. Berlin: Springer.
Brodatz, P. (1966a). http://www.ux.uis.no/~tranden/brodatz.html . Accessed 16 Oct 2018.
Brodatz, P. (1966b). Textures: A photographic album for artists and designers. New York: Dover Publications.
Bruna, J., & Mallat, S. (2013). Invariant scattering convolution networks. IEEE TPAMI, 35(8), 1872–1886.
Burghouts, G., & Geusebroek, J. (2009). Material specific adaptation of color invariant features. Pattern Recognition Letters, 30(3), 306–313.
Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., & Fua, P. (2012). BRIEF: Computing a local binary descriptor very fast. IEEE TPAMI, 34, 1281–1298.
Candes, E. J., & Tao, T. (2006). Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans Information Theory, 52(12), 5406–5425.
Caputo, B., Hayman, E., & Mallikarjuna, P. (2005). Class specific material categorisation. ICCV, 2, 1597–1604.
Chan, T., Jia, K., Gao, S., Lu, J., Zeng, Z., & Ma, Y. (2015). PCANet: A simple deep learning baseline for image classification? IEEE Trans Image Processing, 24(12), 5017–5032.
Chatfield, K., Lempitsky, V., Vedaldi, A., & Zisserman, A. (2011). The devil is in the details: an evaluation of recent feature encoding methods. In BMVC (Vol. 2, pp. 8).
Chatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Return of the devil in the details: Delving deep into convolutional nets. In BMVC.
Chellappa, R., & Chatterjee, S. (1985). Classification of textures using Gaussian Markov Random fields. IEEE Trans Acoustics, Speech, and Signal Processing, 33(4), 959–963.
Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., et al. (2010). WLD: A robust local image descriptor. IEEE TPAMI, 32(9), 1705–1720.
Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., & Vedaldi, A. (2014). Describing textures in the wild. In CVPR (pp. 3606–3613).
Cimpoi, M., Maji, S., Kokkinos, I., & Vedaldi, A. (2016). Deep filter banks for texture recognition, description, and segmentation. IJCV, 118(1), 65–94.
Cimpoi, M., Maji, S., & Vedaldi, A. (2015). Deep filter banks for texture recognition and segmentation. In CVPR (pp. 3828–3836).
Cinbis, R. G., Verbeek, J., & Schmid, C. (2016). Approximate fisher kernels of non-iid image models for image categorization. IEEE TPAMI, 38(6), 1084–1098.
Coates, A., & Ng, A. (2011). The importance of encoding versus training with sparse coding and vector quantization. In ICML (pp. 921–928).
Conners, R. W., & Harlow, C. A. (1980). A theoretical comparison of texture algorithms. IEEE TPAMI, 3, 204–222.
Crosier, M., & Griffin, L. D. (2010). Using basic image features for texture classification. IJCV, 88(3), 447–460.
Csurka, G., Dance, C., Fan, L., Willamowski, J., & Bray, C. (2004). Visual categorization with bags of keypoints. In ECCV Workshop on statistical learning in computer vision
CUReT. (1999). http://www.cs.columbia.edu/CAVE/software/curet/html/about.php . Accessed 16 Oct 2018.
Cusano, C., Napoletano, P., & Schettini, R. (2016). Evaluating color texture descriptors under large variations of controlled lighting conditions. Journal of the Optical Socienty of America A, 33(1), 17–30.
Dai, X., Ng, J. Y.-H., & Davis, L. S. (2017). FASON: First and second order information fusion Network for texture recognition. In CVPR (pp. 7352–7360).
Dana, K., Van Ginneken, B., Nayar, S., & Koenderink, J. (1999). Reflectance and texture of real world surfaces. ACM Transactions On Graphics, 18(1), 1–34.
Depeursinge, A., Al-Kadi, O., & Mitchell, J. (2017). Biomedical texture analysis. New York: Academic Press.
Ding, C., Choi, J., Tao, D., & Davis, L. S. (2016). Multi-directional multi-level dual-cross patterns for robust face recognition. IEEE TPAMI, 38(3), 518–531.
Dixit, M., Chen, S., Gao, D., Rasiwasia, N., & Vasconcelos, N. (2015). Scene classification with semantic fisher vectors. In CVPR (pp. 2974–2983).
Dixit, M. D., & Vasconcelos, N. (2016). Object based scene representations using fisher scores of local subspace projections. In NIPS (pp. 2811–2819).
Drexel. (2012). https://www.cs.drexel.edu/~kon/codeanddata/texture/index.html . Accessed 16 Oct 2018.
DTD. (2014). http://www.robots.ox.ac.uk/~vgg/data/dtd/ . Accessed 16 Oct 2018.
Duan, Y., Lu, J., Feng, J., & Zhou, J. (2018). Context aware local binary feature learning for face recognition. IEEE TPAMI, 40(5), 1139–1153.
Efros, A. A., & Leung, T. K. (1999). Texture synthesis by nonparametric sampling. ICCV, 2, 1033–1038.
Everingham, M., Eslami, S., Gool, L. V., Williams, C., Winn, J., & Zisserman, A. (2015). The pascal visual object classes challenge: A retrospective. IJCV, 111(1), 98–136.
Farhadi, A., Endres, I., Hoiem, D., & Forsyth, D. (2009). Describing objects by their attributes. In CVPR (pp. 1778–1785).
FMD. (2009). http://people.csail.mit.edu/celiu/CVPR2010/FMD/ . Accessed 16 Oct 2018.
Forsyth, D., & Ponce, J. (2012). Computer vision: A modern approach (2nd ed.). USA: Pearson Education.
Freeman, W., & Adelson, E. (1991). The design and use of steerable filters. IEEE TPAMI, 13(9), 891–906.
Fritz, M., Hayman, E., Caputo, B., & Eklundh, J. (2004). The KTH-TIPS database. http://www.nada.kth.se/cvap/databases/kth-tips/kth_tips.pdf . Accessed 16 Oct 2018.
Gao, Y., Beijbom, O., Zhang, N., & Darrell, T. (2016). Compact bilinear pooling. In CVPR (pp. 317–326).
Gårding, J., & Lindeberg, T. (1996). Direct computation of shape cues using scale-adapted spatial derivative operators. IJCV, 17(2), 163–191.
Gatys, L., Ecker, A., & Bethge, M. (2015). Texture synthesis using convolutional neural networks. In NIPS (pp. 262–270).
Gatys, L., Ecker, A., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In CVPR (pp. 2414–2423)
Georgescu, B., Shimshoni, I., & Meer, P. (2003). Mean shift based clustering in high dimensions: A texture classification example. In ICCV (Vol. 3, p. 456).
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR (pp. 580–587).
Giryes, R., Sapiro, G., & Bronstein, A. M. (2016). Deep neural networks with random gaussian weights: A universal classification strategy? IEEE Trans Signal Processing, 64(13), 3444–3457.
Gong, Y., Wang, L., Guo, R., & Lazebnik, S. (2014). Multi scale orderless pooling of deep convolutional activation features. In ECCV (pp. 392–407).
Grauman, K., & Darrell, T. (2005). The pyramid match kernel: Discriminative classification with sets of image features. ICCV, 2, 1458–1465.
Griffin, L., Lillholm, M., Crosier, M., & van Sande, J. (2009). Basic image features (BIFs) arising from approximate symmetry type. In Scale space and variational methods in computer vision (pp. 343–355).
Griffin, L. D., & Lillholm, M. (2010). Symmetry sensitivities of derivative-of-gaussian filters. IEEE TPAMI, 32(6), 1072–1083.
Ground Terrain in Outdoor Scenes (GTOS). (2016). http://computervision.engr.rutgers.edu/ . Accessed 16 Oct 2018.
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., et al. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354–377.
Guo, Z., Wang, X., Zhou, J., & You, J. (2016). Robust texture image representation by scale selective local binary patterns. IEEE Trans Image Processing, 25(2), 687–699.
Guo, Z., Zhang, L., & Zhang, D. (2010). A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Processing, 9(16), 1657–1663.
Han, J., & Ma, K. (2007). Rotation invariant and scale invariant gabor features for texture image retrieval. Image and Vision Computing, 25(9), 1474–1481.
Haralick, R. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786–804.
Haralick, R., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Trans on Systems, Man, and Cybernetics, 6, 610–621.
Hariharan, B., Arbeláez, P., Girshick, R., & Malik, J. (2015). Hypercolumns for object segmentation and fine-grained localization. In CVPR (pp. 447–456).
Hayman, E., Caputo, B., Fritz, M., & Eklundh, J. (2004). On the significance of real world conditions for material classification. In ECCV (pp. 253–266).
He, C., Li, S., Liao, Z., & Liao, M. (2013). Texture classification of PolSAR data based on sparse coding of wavelet polarization textons. IEEE Trans Geoscience and Remote Sensing, 51(8), 4576–4590.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR (pp. 770–778).
Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. In CVPR.
Huang, D., Shan, C., Ardabilian, M., Wang, Y., & Chen, L. (2011). Local binary patterns and its application to facial image analysis: a survey. IEEE Transactions on Systems, Man, and Cybernetics Part C, 41(6), 765–781.
Huang, G., Liu, Z., Weinberger, K. Q., & van der Maaten, L. (2017). Densely connected convolutional networks. In CVPR.
Huang, Y., Wu, Z., Wang, L., & Tan, T. (2014). Feature coding in image classification: A comprehensive study. IEEE TPAMI, 36(3), 493–506.
Jain, A., Duin, R., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE TPAMI, 22(1), 4–37.
Jain, A., & Farrokhnia, F. (1991). Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 24(12), 1167–1186.
Jegou, H., Perronnin, F., Douze, M., Sánchez, J., Perez, P., & Schmid, C. (2012). Aggregating local image descriptors into compact codes. IEEE TPAMI, 34(9), 1704–1716.
Julesz, B. (1962). Visual pattern discrimination. IRE Transactions on Information Theory, 8(2), 84–92.
Julesz, B. (1981). Textons, the elements of texture perception, and their interactions. Nature, 290(5802), 91–97.
Julesz, B., & Bergen, J. (1983). Human factors and behavioral science: Textons, the fundamental elements in preattentive vision and perception of textures. The Bell System Technical Journal, 62(6), 1619–1645.
Kadir, T., & Brady, J. (2002). Scale, saliency and scene description. Ph.D. thesis, Oxford University
Kandaswamy, U., Adjeroh, D., & Lee, M. (2005). Efficient texture analysis of SAR imagery. IEEE Trans Geoscience and Remote Sensing, 43(9), 2075–2083.
Kandaswamy, U., Schuckers, S., & Adjeroh, D. (2011). Comparison of texture analysis schemes under nonideal conditions. IEEE Trans Image Processing, 20(8), 2260–2275.
Keller, J., Chen, S., & Crownover, R. (1989). Texture description and segmentation through fractal geometry. Computer Vision, Graphics, and Image Processing, 45(2), 150–166.
Kim, K., Jung, K., Park, S., & Kim, H. (2002). Support vector machines for texture classification. IEEE TPAMI, 24(11), 1542–1550.
Kong, S., & Fowlkes, C. (2017). Low rank bilinear pooling for fine grained classification. In CVPR (pp. 7025–7034).
Kong, S., & Wang, D. (2012). Multilevel feature descriptor for robust texture classification via locality constrained collaborative strategy. arXiv:1203.0488
Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., et al. (2017). Visual genome: Connecting language and vision using crowdsourced dense image annotations. IJCV, 123(1), 32–73.
Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In NIPS (pp. 1097–1105)
KTHTIPS. (2004). http://www.nada.kth.se/cvap/databases/kth-tips/download.html . Accessed 16 Oct 2018.
Kumar, N., Berg, A., Belhumeur, P. N., & Nayar, S. (2011). Describable visual attributes for face verification and image search. IEEE TPAMI, 33(10), 1962–1977.
Kwitt, R., Vasconcelos, N., & Rasiwasia, N. (2012). Scene recognition on the semantic manifold. In ECCV (pp. 359–372). Springer
Lategahn, H., Gross, S., Stehle, T., & Aach, T. (2010). Texture classification by modeling joint distributions of local patterns with Gaussian mixtures. IEEE Transaction on Image Processing, 19(6), 1548–1557.
Laws, K. (1980). Rapid texture identification. In Proceedings of SPIE Conference on Image Processing for Missile Guidance (Vol. 238, pp. 376–381).
Lazebnik, S., Schmid, C., & Ponce, J. (2003). A sparse texture representation using affine-invariant regions. In CVPR (vol 2), pp. II–II
Lazebnik, S., Schmid, C., & Ponce, J. (2005). A sparse texture representation using local affine regions. IEEE TPAMI, 27(8), 1265–1278.
Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. CVPR, 2, 2169–2178.
Leung, T., & Malik, J. (2001). Representing and recognizing the visual appearance of materials using three-dimensional textons. IJCV, 43(1), 29–44.
Leutenegger, S., Chli, M., & Siegwart, R. (2011). BRISK: Binary robust invariant scalable keypoints. In ICCV (pp. 2548–2555)
Levi, G., & Hassner, T. (2015). Emotion recognition in the wild via convolutional neural networks and mapped binary patterns. In ACM ICMI (pp. 503–510)
LFMD. (2016). http://eceweb1.rutgers.edu/~kdana/code.html . Accessed 16 Oct 2018.
Li, L., Su, H., Lim, Y., & FeiFei, L. (2014). Object bank: An object level image representation for high level visual recognition. IJCV, 107(1), 20–39.
Li, S. (2009). Markov random field modeling in image analysis. Berlin: Springer.
Lin, T., & Maji, S. (2016). Visualizing and understanding deep texture representations. In CVPR (pp. 2791–2799).
Lin, T., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, L. (2014). Microsoft COCO: Common objects in context. In ECCV (pp. 740–755).
Lin, T., RoyChowdhury, A., & Maji, S. (2015). Bilinear CNN models for fine-grained visual recognition. In CVPR (pp. 1449–1457).
Lin, T., RoyChowdhury, A., & Maji, S. (2018). Bilinear convolutional neural networks for fine-grained visual recognition. IEEE TPAMI, 40(6), 1309–1322.
Lin, X., Zhao, C., & Pan, W. (2017). Towards accurate binary convolutional neural network. In NIPS (pp. 344–352).
Liu, L., & Fieguth, P. (2012). Texture classification from random features. IEEE TPAMI, 34(3), 574–586.
Liu, L., Fieguth, P., Guo, Y., Wang, X., & Pietikäinen, M. (2017). Local binary features for texture classification: Taxonomy and experimental study. Pattern Recognition, 62, 135–160.
Liu, L., Fieguth, P., Hu, D., Wei, Y., & Kuang, G. (2015). Fusing sorted random projections for robust texture and material classification. IEEE TCSVT, 25(3), 482–496.
Liu, L., Fieguth, P., Kuang, G., & Clausi, D. (2012). Sorted random projections for robust rotation invariant texture classification. Pattern Recognition, 45(6), 2405–2418.
Liu, L., Fieguth, P., Kuang, G., & Zha, H. (2011a). Sorted random projections for robust texture classification. In ICCV (pp. 391–398). IEEE.
Liu, L., Fieguth, P., Wang, X., Pietikäinen, M., & Hu, D. (2016a). Evaluation of LBP and deep texture descriptors with a new robustness benchmark. In ECCV
Liu, L., Lao, S., Fieguth, P., Guo, Y., Wang, X., & Pietikainen, M. (2016b). Median robust extended local binary pattern for texture classification. IEEE Trans Image Processing, 25(3), 1368–1381.
Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., et al. (2018). Deep learning for generic object detection: A survey. arXiv:1809.02165
Liu, L., Wang, L., & Liu, X. (2011b). In defense of soft assignment coding. In ICCV (pp. 2486–2493).
Liu, Y., Tsin, Y., & Lin, W. (2005). The promise and perils of near regular texture. IJCV, 62(1), 145–159.
Lu, J., Liong, V. E., & Zhou, J. (2018). Simultaneous local binary feature learning and encoding for homogeneous and heterogeneous face recognition. IEEE TPAMI, 40(8), 1979–1993.
Ma, L., Tan, T., Wang, Y., & Zhang, D. (2003). Personal identification based on iris texture analysis. IEEE TPAMI, 25(12), 1519–1533.
Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.
Mairal, J., Bach, F., Ponce, J., Sapiro, G., & Zisserman, A. (2008). Discriminative learned dictionaries for local image analysis. In CVPR (pp. 1–8). IEEE.
Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., & Bach, F. (2009). Supervised dictionary learning. In NIPS (pp. 1033–1040).
Maji, S., Berg, A., & Malik, J. (2008). Classification using intersection kernel support vector machines is efficient. In CVPR (pp. 1–8).
Malik, J., Belongie, S., Shi, J., & Leung, T. (1999). Textons, contours and regions: Cue integration in image segmentation. ICCV, 2, 918–925.
Malik, J., & Perona, P. (1990). Preattentive texture discrimination with early vision mechanisms. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 7(5), 923–932.
Mallat, S. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE TPAMI, 11(7), 674–693.
Mallikarjuna, P., Fritz, M., Tavakoli Targhi, A., Hayman, E., Caputo, B., et al. (2004). The KTH-TIPS and KTH-TIPS2 databases. http://www.nada.kth.se/cvap/databases/kth-tips/documentation.html . Accessed 16 Oct 2018.
Mallikarjuna, P., Tavakoli, A., Fritz, M., Hayman, E., Caputo, B., & Eklundh, J. (2006). The KTH-TIPS2 database. http://www.nada.kth.se/cvap/databases/kth-tips/kth-tips2.pdf . Accessed 16 Oct 2018.
Mandelbrot, B., & Pignoni, R. (1983). The fractal geometry of nature. New York: Freeman.
Manjunath, B., & Chellappa, R. (1991). Unsupervised texture segmentation using markov random field models. IEEE TPAMI, 13(5), 478–482.
Manjunath, B. S., & Ma, W.-Y. (1996). Texture features for browsing and retrieval of image data. IEEE TPAMI, 18(8), 837–842.
Mao, J., & Jain, A. (1992). Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition, 25(2), 173–188.
Marszałek, M., Schmid, C., Harzallah, H., J. van de W. (2007). Learning object representations for visual object class recognition. In ICCV workshop on visual recognition challange
Matthews, T., Nixon, M. S., & Niranjan, M. (2013) Enriching texture analysis with semantic data. In CVPR (pp. 1248–1255).
Mellor, M., Hong, B.-W., & Brady, M. (2008). Locally rotation, contrast, and scale invariant descriptors for texture analysis. IEEE TPAMI, 30(1), 52–61.
Mikolajczyk, K., & Schmid, C. (2002). An affine invariant interest point detector. In ECCV (pp. 128–142).
Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE TPAMI, 27(10), 1615–1630.
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., et al. (2005). A comparison of affine region detectors. IJCV, 65(1–2), 43–72.
MINC. (2015). http://opensurfaces.cs.cornell.edu/publications/minc/ . Accessed 16 Oct 2018.
Mirmehdi, M., Xie, X., & Suri, J. (2008). Handbook of texture analysis. London: Imperial College Press.
Nanni, L., Lumini, A., & Brahnam, S. (2010). Local binary patterns variants as texture descriptors for medical image analysis. Artificial Intelligence in Medicine, 49(2), 117–125.
Napoletano, P. (2017). Hand crafted vs learned descriptors for color texture classification. In International workshop computational color imaging (pp. 259–271).
Ohanian, P., & Dubes, R. (1992). Performance evaluation for four classes of textural features. Pattern Recognition, 25(8), 819–833.
Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., & Huovinen, S. (2002a). Outex-new framework for empirical evaluation of texture analysis algorithms. ICPR, 1, 701–706.
Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51–59.
Ojala, T., Pietikäinen, M., & Maenpää, T. (2002b). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE TPAMI, 24(7), 971–987.
Ojansivu, V., & Heikkilä, J. (2008). Blur insensitive texture classification using local phase quantization. In International conference on image and signal processing (pp. 236–243).
Ojansivu, V., Rahtu, E., & Heikkila, J. (2008). Rotation invariant local phase quantization for blur insensitive texture analysis. In ICPR (pp. 1–4).
Okazawa, G., Tajima, S., & Komatsu, H. (2015). Image statistics underlying natural texture selectivity of neurons in macaque v4. Proceedings of the National Academy of Sciences, 112(4), E351–E360.
Olshausen, B., & Field, D. (1996). Emergence of simple cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609.
Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision Research, 37(23), 3311–3325.
Open Surfaces. (2013). http://opensurfaces.cs.cornell.edu/ . Accessed 16 Oct 2018.
Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional neural networks. In CVPR (pp. 1717–1724).
Outex. (2002). http://www.outex.oulu.fi/index.php?page=outex_home . Accessed 16 Oct 2018.
Oyallon, E., & Mallat, S. (2015). Deep roto-translation scattering for object classification. In CVPR (pp. 2865–2873).
Patterson, G., Xu, C., Su, H., & Hays, J. (2014). The sun attribute database: Beyond categories for deeper scene understanding. IJCV, 108(1–2), 59–81.
Peikari, M., Gangeh, M. J., Zubovits, J., Clarke, G., & Martel, A. L. (2016). Triaging diagnostically relevant regions from pathology whole slides of breast cancer: A texture based approach. IEEE Transactions on Medical Imaging, 35(1), 307–315.
Perronnin, F., & Dance, C. (2007). Fisher kernels on visual vocabularies for image categorization. In CVPR (pp. 1–8).
Perronnin, F., Sanchez, J., & Mensink, T. (2010). Improving the fisher kernel for large scale image classification. ECCV, 6314, 143–156.
Petrou, M., & Sevilla, P. (2006). Image processing: Dealing with texture (Vol. 1). Hoboken: Wiley Online Library.
Peyré, G. (2009). Sparse modeling of textures. Journal of Mathematical Imaging and Vision, 34(1), 17–31.
Picard, R. W., Kabir, T., & Liu, F. (1993). Real-time recognition with the entire brodatz texture database. In CVPR (pp. 638–638).
Pichler, O., Teuner, A., & Hosticka, B. (1996). A comparison of texture feature extraction using adaptive Gabor filtering, pyramidal and tree structured wavelet transforms. Pattern Recognition, 29(5), 733–742.
Pietikäinen, M., Hadid, A., Zhao, G., & Ahonen, T. (2011). Computer vision using local binary patterns. London: Springer.
Pietikäinen, M., Ojala, T., & Xu, Z. (2000). Rotation invariant texture classification using feature distributions. Pattern Recognition, 33(1), 43–52.
Portilla, J., & Simoncelli, E. P. (2000). A parametric texture model based on joint statistics of complex wavelet coefficients. IJCV, 40(1), 49–70.
Pun, C., & Lee, M. (2003). Log-polar wavelet energy signatures for rotation and scale invariant texture classification. IEEE TPAMI, 25(5), 590–603.
Quan, Y., Xu, Y., Sun, Y., & Luo, Y. (2014). Lacunarity analysis on image patterns for texture classification. In CVPR (pp. 160–167).
Raad, L., Davy, A., Desolneux, A., & Morel, J. (2017). A survey of exemplar based texture synthesis. arXiv preprint arXiv:1707.07184 .
Randen, T., & Husoy, J. (1999). Filtering for texture classification: A comparative study. IEEE TPAMI, 21(4), 291–310.
Rasiwasia, N., & Vasconcelos, N. (2012). Holistic context models for visual recognition. IEEE TPAMI, 34(5), 902–917.
Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). XNORNet: ImageNet classification using binary convolutional neural networks. In ECCV (pp. 525–542).
Raw Food Texture (RFT). (2016). http://www.ivl.disco.unimib.it/minisites/rawfoot/download.php . Accessed 16 Oct 2018.
Reed, T., & Wechsler, H. (1990). Segmentation of textured images and gestalt organization using spatial/spatial-frequency representations. IEEE TPAMI, 12(1), 1–12.
Reed, T. R., & Dubuf, J. H. (1993). A review of recent texture segmentation and feature extraction techniques. CVGIP: Image Understanding, 57(3), 359–372.
Ren, J., Jiang, X., & Yuan, J. (2013). Noise resistant local binary pattern with an embedded error-correction mechanism. IEEE Transactions on Image Processing, 22(10), 4049–4060.
Renninger, L. W., & Malik, J. (2004). When is scene identification just texture recognition? Vision Research, 44(19), 2301–2311.
Robotics Domain Attributes Database (RDAD). (2016). http://wiki.ros.org/ipa_texture_classification . Accessed 16 Oct 2018.
Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. In ICCV (pp. 2564–2571).
Rubner, Y., Tomasi, C., & Guibas, L. (2000). The Earth Mover’s Distance as a metric for image retrieval. IJCV, 40(2), 99–121.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). ImageNet large scale visual recognition challenge. IJCV, 115(3), 211–252.
Ryu, J., Hong, S., & Yang, H. (2015). Sorted consecutive local binary pattern for texture classification. IEEE Transactions on Image Processing, 24(7), 2254–2265.
Sanchez, J., Perronnin, F., Mensink, T., & Verbeek, J. (2013). Image classification with the fisher vector: Theory and practice. IJCV, 105(3), 222–245.
Schmid, C. (2001). Constructing models for content based image retrieval. CVPR, 2, 39–45.
Schwartz, G., & Nishino, K. (2015). Automatically discovering local visual material attributes. In CVPR (pp. 3565–3573).
Sharan, L., Liu, C., Rosenholtz, R., & Adelson, E. (2013). Recognizing materials using perceptually inspired features. IJCV, 103(3), 348–371.
Sharan, L., Rosenholtz, R., & Adelson, E. (2009). Material perception: What can you see in a brief glance? Journal of Vision, 9(8), 784–784.
Sharif Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off the shelf: An astounding baseline for recognition. In CVPRW (pp. 806–813).
Sharma, G., & Jurie, F. (2016). Local higher order statistics (LHS) describing images with statistics of local non-binarized pixel patterns. CVIU, 142, 13–22.
Shotton, J., Winn, J., Rother, C., & Criminisi, A. (2009). Textonboost for image understanding: Multiclass object recognition and segmentation by jointly modeling texture, layout, and context. IJCV, 81(1), 2–23.
Sifre, L. (2014). Rigid motion scattering for image classification, 2014. Ph.D. thesis, École Polytechnique.
Sifre, L., & Mallat, S. (2012). Combined scattering for rotation invariant texture analysis. In Proceedings of European symposium on artificial neural networks.
Sifre, L., & Mallat, S. (2013). Rotation, scaling and deformation invariant scattering for texture discrimination. In CVPR (pp. 1233–1240).
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In International conference on learning representation.
Simonyan, K., Parkhi, O., Vedaldi, A., & Zisserman, A. (2013). Fisher vector faces in the wild. In BMVC (Vol. 2, p. 4).
Sivic, J., & Zisserman, A. (2003). Video google: A text retrieval approach to object matching in videos. ICCV, 2, 1470–1477.
Skretting, K., & Husøy, J. (2006). Texture classification using sparse frame-based representations. EURASIP Journal on Advances in Signal Processing, 1, 1–11.
Song, Y., Zhang, F., Li, Q., Huang, H., O’Donnell, L., & Cai, W. (2017). Locally transferred fisher vectors for texture classification. In CVPR (pp. 4912–4920).
Sulc, M., & Matas, J. (2014). Fast features invariant to rotation and scale of texture. In ECCV (pp. 47–62).
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In CVPR (pp. 1–9).
Tamura, H., Mori, S., & Yamawaki, T. (1978). Textural features corresponding to visual perception. IEEE Transactions on Systems, Man, and Cybernetics, 8(6), 460–473.
Tan, X., & Triggs, B. (2007). Enhanced local texture feature sets for face recognition under difficult lighting conditions. In Analysis and modeling of faces and gestures (pp. 168–182).
Timofte, R., & Van Gool, L. (2012). A training-free classification framework for textures, writers, and materials. In BMVC (Vol 13, p. 14).
Tuceryan, M., & Jain, A. (1993). Handbook of pattern recognition and computer vision. chap Texture Analysis (pp. 235–276).
Tuytelaars, T., & Mikolajczyk, K. (2008). Local invariant feature detectors: A survey. Foundations and Trends in Computer Graphics and Vision, 3(3), 177–280.
UBO2014. (2016). http://cg.cs.uni-bonn.de/en/projects/btfdbb/download/ubo2014/ . Accessed 16 Oct 2018.
UIUC. (2005). http://slazebni.cs.illinois.edu/research/uiuc_texture_dataset.zip . Accessed 16 Oct 2018.
Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2017). Improved texture networks: Maximizing quality and diversity in feed forward stylization and texture synthesis. In International conference on computer vision and pattern recognition
UMD. (2009). http://users.umiacs.umd.edu/~fer/website-texture/texture.htm . Accessed 16 Oct 2018.
Valkealahti, K., & Oja, E. (1998). Reduced multidimensional cooccurrence histograms in texture classification. IEEE TPAMI, 20(1), 90–94.
Van Gemert, J., Geusebroek, J., Veenman, C., & Smeulders, A. (2008). Kernel codebooks for scene categorization. In ECCV (pp. 696–709).
Van Gemert, J., Veenman, C., Smeulders, A., & Geusebroek, J.-M. (2010). Visual word ambiguity. IEEE TPAMI, 32(7), 1271–1283.
Van Gool, L., Dewaele, P., & Oosterlinck, A. (1985). Texture analysis anno 1983. Computer Vision, Graphics, and Image Processing, 29(3), 336–357.
Varma, M., & Garg, R. (2007). Locally invariant fractal features for statistical texture classification. In ICCV (pp. 1–8).
Varma, M., & Zisserman, A. (2005). A statistical approach to texture classification from single images. IJCV, 62(1–2), 61–81.
Varma, M., & Zisserman, A. (2009). A statistical approach to material classification using image patches. IEEE TPAMI, 31(11), 2032–2047.
Vasconcelos, N., & Lippman, A. (2000). A probabilistic architecture for content based image retrieval. CVPR, 1, 216–221.
VisTex. (1995). http://vismod.media.mit.edu/vismod/imagery/VisionTexture/ . Accessed 16 Oct 2018.
Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., & Gong, Y. (2010). Locality-constrained linear coding for image classification. In CVPR (pp. 3360–3367). IEEE.
Wang, T., Zhu, J., Hiroaki, E., Chandraker, M., Efros, A. A., & Ramamoorthi, R. (2016). A 4D light field dataset and CNN architectures for material recognition. In ECCV (pp. 121–138).
Wei, L., & Levoy, M. (2000). Fast texture synthesis using tree-structured vector quantization. In International conference on Computer graphics and interactive techniques (pp. 479–488).
Weinmann, M., Gall, J., & Klein, R. (2014). Material classification based on training data synthesized using a BTF database. In ECCV (pp. 156–171).
Weszka, J. S., Dyer, C. R., & Rosenfeld, A. (1976). A comparative study of texture measures for terrain classification. IEEE Trans Systems, Man, and Cybernetics, 4, 269–285.
Winn, J., Criminisi, A., & Minka, T. (2005). Object categorization by learned universal visual dictionary. ICCV, 2, 1800–1807.
Wright, J., Yang, A., Ganesh, A., Sastry, S., & Ma, Y. (2009). Robust face recognition via sparse representation. IEEE TPAMI, 31(2), 210–227.
Wu, Y., Zhu, S., & Liu, X. (2000). Equivalence of julesz ensembles and FRAME models. IJCV, 38(3), 247–265.
Xie, J., Hu, W., Zhu, S., & Wu, Y. (2015). Learning sparse FRAME models for natural image patterns. IJCV, 114(2–3), 91–112.
Xie, X., & Mirmehdi, M. (2007). TEXEMS: Texture exemplars for defect detection on random textured surfaces. IEEE TPAMI, 29(8), 1454–1464.
Xu, J., Boddeti, V. N., & Savvides, M. (2017). Local binary convolutional neural networks. In CVPR.
Xu, Y., Huang, S., Ji, H., & Fermuller, C. (2009a). Combining powerful local and global statistics for texture description. In CVPR (pp. 573–580).
Xu, Y., Ji, H., & Fermüller, C. (2009b). Viewpoint invariant texture description using fractal analysis. IJCV, 83(1), 85–100.
Xu, Y., Yang, X., Ling, H., & Ji, H. (2010). A new texture descriptor using multifractal analysis in multiorientation wavelet pyramid. In CVPR (pp. 161–168).
Xue, J., Zhang, H., Dana, K., & Nishino, K. (2017). Differential angular imaging for material recognition. In CVPR.
Yang, J., Yu, K., Gong, Y., & Huang, T. (2009). Linear spatial pyramid matching using sparse coding for image classification. In CVPR (pp. 1794–1801).
Yang, L., Jin, R., Sukthankar, R., & Jurie, F. (2008). Unifying discriminative visual codebook generation with classifier training for object category recognition. In CVPR (pp. 1–8).
Ylioinas, J., Hong, X., & Pietikäinen, M. (2013). Constructing local binary pattern statistics by soft voting. In Scandinavian conference on image analysis (pp. 119–130).
Zhai, H., Liu, C., Dong, H., Ji, Y., Guo, Y., & Gong, S. (2015). Face verification across aging based on deep convolutional networks and local binary patterns. In International conference on intelligent science and big data engineering (pp. 341–350).
Zhai, Y., Ong, Y.-S., & Tsang, I. (2014). The emerging “big dimensionality”. IEEE Computational Intelligence Magazine, 9(3), 14–26.
Zhang, J., Marszalek, M., Lazebnik, S., & Schmid, C. (2007). Local features and kernels for classification of texture and object categories: A comprehensive study. IJCV, 73(2), 213–238.
Zhang, J., & Tan, T. (2002). Brief review of invariant texture analysis methods. Pattern Recognition, 35(3), 735–747.
Zhang, W., Shan, S., Gao, W., Chen, X., & Zhang, H. (2005). Local gabor binary pattern histogram sequence (LGBPHS): A novel nonstatistical model for face representation and recognition. ICCV, 1, 786–791.
Zhao, G., & Pietikäinen, M. (2007). Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE TPAMI, 29(6), 915–928.
Zheng, L., Yang, Y., & Tian, Q. (2018). SIFT meets CNN: A decade survey of instance retrieval. IEEE TPAMI, 40(5), 1224–1244.
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2018). Places: A 10 million image database for scene recognition. IEEE TPAMI, 40(6), 1452–1464.
Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., & Oliva, A. (2014). Learning deep features for scene recognition using places database. In NIPS (pp. 487–495).
Zhu, S. (2003). Statistical modeling and conceptualization of visual patterns. IEEE TPAMI, 25(6), 691–712.
Zhu, S., Liu, X., & Wu, Y. (2000). Exploring texture ensembles by efficient markov chain monte carlo-toward a “trichromacy” theory of texture. IEEE TPAMI, 22(6), 554–569.