Từ Nguyên Tử đến Các Nguồn Dầu Trước Muối: Mô Hình Đa Thang về Các Cơ Chế Tăng Cường Khai Thác Dầu Từ Nước Muối Thấp

Polytechnica - Tập 2 - Trang 30-50 - 2019
Gabriela Dias da Silva1, Ernane de Freitas Martins1, Michele Aparecida Salvador1, Alvaro David Torrez Baptista1, James Moraes de Almeida1, Caetano Rodrigues Miranda1
1Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

Tóm tắt

Mục tiêu của bài báo tổng quan này là hai mặt: cung cấp một khảo sát cập nhật về tài liệu liên quan đến các cơ chế được đề xuất đứng sau việc khai thác dầu tăng cường bằng nước muối thấp (EOR) và đề xuất các cách thức mô hình hóa chúng dựa trên mô phỏng kết hợp từ quy mô nguyên tử đến quy mô bể chứa. Việc bơm nước muối thấp (LSWI) có một số lợi thế so với các kỹ thuật EOR khác vì đây là một phương pháp tiết kiệm chi phí, không gây ra tổn hại môi trường và không ảnh hưởng đến các giai đoạn xử lý và tinh chế dầu thô sau này. LSWI đặc biệt thú vị cho việc thăm dò và sản xuất trên các bể chứa carbonat trước muối. Chúng tôi kết hợp các cơ chế LSWI với các phương pháp mô hình hóa phân tử, giải quyết sự sử dụng của chúng để mô tả EOR thông qua LSWI. Từ việc mô hình hóa phân tử, người ta có thể thu được các tham số cho các mô phỏng bể chứa quy mô lớn, từ đó cải thiện độ chính xác của chúng. Do đó, các phương pháp mô hình hóa phân tử là các công cụ bổ trợ để tối ưu hóa EOR thông qua LSWI. Trong tất cả các cơ chế liên quan đến LSWI, sự thay đổi độ ẩm bề mặt được chỉ ra bởi một số tác giả là cơ chế cơ bản cần thiết để giải thích EOR. Tuy nhiên, vẫn còn những tranh cãi liên quan đến nguyên nhân của nó: hiệu ứng muối, sự trao đổi ion đa thành phần, sự thay đổi pH, sự mở rộng của lớp điện kép, sự di cư của các hạt tinh vi, sự giải phóng hạn chế của các hạt và áp lực thẩm thấu là một trong những đề xuất chính. Trong bối cảnh này, nhiều kỹ thuật mô hình hóa phân tử đã được khám phá để thúc đẩy các lý thuyết giải thích các cơ chế có thể và tối ưu hóa sản xuất dầu bằng cách kết hợp các mô phỏng động lực học phân tử và tính toán Ab initio với các mô phỏng bể chứa.

Từ khóa

#khai thác dầu #mô hình hóa phân tử #bơm nước muối thấp #tăng cường khai thác dầu #mô phỏng đa thang

Tài liệu tham khảo

Aksulu H, Håmsø D, Strand S, Puntervold T, Austad T (2012) . Energy and Fuels 26(6):3497. https://doi.org/10.1021/ef300162n Alejandre J, Tildesley DJ, Chapela GA (1995) . J Chem Phys 102(11):4574. https://doi.org/10.1063/1.469505 Alhammadi M, Mahzari P, Sohrabi M (2017) Experimental investigation of the underlying mechanism behind improved oil recovery by low salinity water injection in carbonate reservoir rocks. https://doi.org/10.2118/188352-MS Alshakhs MJ, Kovscek AR (2016) . Adv Colloid Interf Sci 233:126. https://doi.org/10.1016/j.cis.2015.08.004 Alvim RS, Lima FCDA, Sánchez VM, Headen TF, Boek ES, Miranda CR (2016) . RSC Adv 6(97):95328. http://xlink.rsc.org/?DOI=C6RA19307B Andersson MP, Dideriksen K, Sakuma H, Stipp SL (2016) . Sci Rep 6(November 2015):1 Andreussi O, Dabo I, Marzari N (2012) . J Chem Phys 136(6):064102. https://doi.org/10.1063/1.3676407 Arsalan N, Palayangoda SS, Burnett DJ, Buiting JJ, Nguyen QP (2013) . Colloids Surf A Physicochem Eng Asp 436:139. https://doi.org/10.1016/j.colsurfa.2013.06.004 Astilleros JM, Pina CM, Fernández-Díaz L, Prieto M, Putnis A (2006) . Chem Geol 225 (3-4):322. https://doi.org/10.1016/j.chemgeo.2005.08.025 Ataman E, Andersson MP, Ceccato M, Bovet N, Stipp SL (2016) . J Phys Chem C 120(30):16597. https://doi.org/10.1021/acs.jpcc.6b01359 Austad T (2013) Water-based EOR in carbonates and sandstones: new chemical understanding of the EOR potential using “Smart Water”, first edit edn. Elsevier Inc. https://doi.org/10.1016/B978-0-12-386545-8.00013-0 Austad T, Rezaeidoust A, Puntervold T (2010) . Spe 129767 (September):19. https://doi.org/10.2118/129767-MS Austad T, Shariatpanahi SF, Strand S, Black C, Webb K (2012) . Energy and Fuels 26(1):569. https://doi.org/10.1021/ef201435g Bai C, Yu B, Liu H, Xie Z, Han S, Zhang L, Ye R, Ge J (2018) . Int J Coal Geol 189:8. https://doi.org/10.1016/j.coal.2018.02.008 Berendsen HJ, Grigera JR, Straatsma TP (1987) . J Phys Chem 91(24):6269. https://doi.org/10.1021/j100308a038 Berg JC (2009) An introduction to interfaces and colloids. World Scientific, Singapore. https://doi.org/10.1142/7579 Bernard GG (1967) SPE California regional meeting. https://doi.org/10.2118/1725-MS Bevilaqua RC, Rigo VA, Veríssimo-Alves M, Miranda CR (2014) J. Chem. Phys. 141(20). https://doi.org/10.1063/1.4902251 Borazjani S, Behr A, Genolet L, Van Der Net A, Bedrikovetsky P (2017) . Transp Porous Media 116(1):213. https://doi.org/10.1007/s11242-016-0771-2 Bourdet J, Pironon J, Levresse G, Tritlla J (2010) Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2009.07.003 Bourg IC, Lee SS, Fenter P, Tournassat C (2017) . J Phys Chem C 2(17):9402. https://doi.org/10.1021/acs.jpcc.7b01828 Boussour S, Cissokho M, Cordier P, Bertin HJ, Hamon G (2009) SPE annual technical conference and exhibition, p 12. http://www.onepetro.org/doi/10.2118/124277-MS Carrillo JMY, Dobrynin AV (2014) . Polymers 6(7):1897. https://doi.org/10.3390/polym6071897 Chandrasekhar S, Mohanty KK (2013) Wettability alteration with brine composition in high temperature carbonate reservoirs Chang R (2008) General chemistry, the essential concepts, 5th edn. McGraw-Hill, New York. https://doi.org/10.1038/159590b0 Chequer L, Vaz A, Bedrikovetsky P (2018) . J Pet Sci Eng 165(January):1054. https://doi.org/10.1016/j.petrol.2018.01.012 Coon ET, Porter ML, Kang Q (2014) . Comput Geosci 18(1):17. https://doi.org/10.1007/s10596-013-9379-6 Coutinho K, Morgon NH (2007) Métodos de química teórica e modelagem molecular, editora da edn., São Paulo - SP, Brasil Crocker M, Marchin L (1988) . J Petrol Tech 40(04):470. https://doi.org/10.2118/14885-PA. http://www.onepetro.org/doi/10.2118/14885-PA Dang CTQ, Nghiem L, Chen ZJ, Nguyen QP (1995). In: SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2013). http://www.onepetro.org/doi/10.2118/166447-MS, p 21 de Leeuw NH, Harding JH, Parker SC (2002) Molecular dynamics simulations of the incorporation of Mg2+, Cd2+ and Sr2+ at calcite growth steps: Introduction of a SrCO3 potential model. Molecular Simulation 28(6–7):573–589. https://doi.org/10.1080/08927020290030143 Derjaguin B (1993) . Prog Surf Sci 43(1–4):1. https://doi.org/10.1016/0079-6816(93)90010-S Derjaguin B, Landau LD (1941) Acta Phys. Chim. (14). https://doi.org/10.1016/0079-6816(93)90013-L Derkani MH, Fletcher AJ, Abdallah W, Sauerer B, Anderson J, Zhang ZJ (2018) . Colloids and Interfaces 2(2):20. https://doi.org/10.3390/colloids2020020. http://www.mdpi.com/2504-5377/2/2/20 Ding H, Rahman S (2017) . Colloids Surf A Physicochem Eng Asp 520(February):622. https://doi.org/10.1016/j.colsurfa.2017.02.006 Ellila G (2012) Capillary forces and osmotic gradients in salt water -oil systems. Ph.D. thesis, Norwegian University of Science and Technology Escamilla-Roa E, Sainz-Díaz CI, Huertas FJ, Hernández-Laguna A (2013) . J Phys Chem C 117 (34):17583. https://doi.org/10.1021/jp404529e Fogden A, Kumar M, Morrow NR, Buckley JS (2011) . Energy and Fuels 25(4):1605. https://doi.org/10.1021/ef101572n Fredriksen SB, Rognmo AU, Sandengen K, Fernø MA (2016) In: International symposium of the society of core analysts held in snowmass Freeman CL, Harding JH, Cooke DJ, Elliott JA, Lardge JS, Duffy DM (2007) . J Phys Chem C 111(32):11943. https://doi.org/10.1021/jp071887p Gaines GL, Thomas HC (1953) . J Chem Phys 21(4):714. https://doi.org/10.1063/1.1698996 Gandomkar A, Rahimpour MR (2015) . Energy and Fuels 29(12):7781. https://doi.org/10.1021/acs.energyfuels.5b01236 Germain P, Amokrane S (2002) . Phys Rev E 65:031109. https://doi.org/10.1103/PhysRevE.65.031109 Ghosh B, Sun L, Osisanya S (2016) International petroleum technology conference, pp 14–16 Gillespie D, Khair AS, Bardhan JP, Pennathur S (2011) . J Colloid Interface Sci 359(2):520. https://doi.org/10.1016/j.jcis.2011.03.088 Harding JH, Parker SC (1999) . Phys Rev B: Condens Matter Mater Phys 60 (19):13792. https://doi.org/10.1103/PhysRevB.60.13792 Headen TF, Boek ES (2011) . Energy and Fuels 25(2):499. https://doi.org/10.1021/ef1010385 Hilner E, Andersson MP, Hassenkam T, Matthiesen J, Salino PA, Stipp SLS (2015) . Scientific Reports 5:9933 EP. Article Hohenberg P, Kohn W (1964) . Phys Rev 136:B864 Hyde AM, Zultanski SL, Waldman JH, Zhong YL, Shevlin M, Peng F (2017) . Org Process Res Dev 21(9):1355. https://doi.org/10.1021/acs.oprd.7b00197 Jen Chen I, Yin D, MacKerell AD (2002) . J Comput Chem 23(2):199. https://doi.org/10.1002/jcc.1166 Jerauld GR, Lin CY, Webb K, Seccombe JC (2006) In: SPE annual technical conference and exhibition (Society of Petroleum Engineers). https://doi.org/10.2118/102239-MS Jiang G, Cheng C, Li D, Liu JZ (2016) . Nano Res 9(1):174. https://doi.org/10.1007/s12274-015-0978-5 Jones FO (1963) Journal of Petroleum Technology, pp 441–446. https://doi.org/10.2118/631-PA Karimi M, Al-Maamari RS, Ayatollahi S, Mehranbod N (2016) J Petrol Sci Eng 560–569. https://doi.org/10.1016/j.petrol.2016.09.015 Kástner J (2011) . Wiley Interdiscip Rev.: Comput Mol Sci 1(6):932. https://doi.org/10.1002/wcms.66 Kazemi Nia Korrani A, Jerauld GR, Sepehrnoori K (2016) . SPE Reserv Eval Eng 19(01):142. http://www.onepetro.org/doi/10.2118/169115-PA Kirch A, Mutisya SM, Sánchez VM, De Almeida JM, Miranda CR (2018) . J Phys Chem C 122 (11):6117. https://doi.org/10.1021/acs.jpcc.7b12582 Klauda JB, Brooks BR, MacKerell AD, Venable RM, Pastor RW (2005) . J Phys Chem B 109 (11):5300. https://doi.org/10.1021/jp0468096 Kobayashi K, Liang Y, Murata S, Matsuoka T, Takahashi S, Nishi N, Sakka T (2017a) Ion Distribution and Hydration Structure in the Stern Layer on Muscovite Surface. Langmuir 33(15):3892–3899. https://doi.org/10.1021/acs.langmuir.7b00436 Kobayashi K, Liang Y, Murata S, Matsuoka T, Takahashi S, Amano KI, Nishi N, Sakka T (2017b) . J Phys Chem C 121(17):9273. https://doi.org/10.1021/acs.jpcc.6b12116 Kohn W, Becke AD, Parr RG (1996) . J Phys Chem 0(96):12974. http://pubs.acs.org/doi/pdfplus/10.1021/jp960669l Kohn W, Sham LJ (1965) . Phys Rev 140:A1133 Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) . J Comput Chem 13 (8):1011. https://doi.org/10.1002/jcc.540130812 Kunieda M, Nakaoka K, Liang Y, Miranda CR, Ueda A, Takahashi S, Okabe H, Matsuoka T (2010) . J Am Chem Soc 137:18281. https://doi.org/10.1021/ja107519d Lager A, Webb K, Black CJJ, Singleton M, Sorbie KS (2006) In: International symposium of the society of core analysts, pp 1–12. https://doi.org/SPWLA-2008-v49n1a2 Lager A, Webb K, Collins I, Richmond DM (2008) SPE-113976-MS (Society of Petroleum Engineers), chap. LoSal Enhanced oil recovery: evidence of enhanced oil recovery at the reservoir scale. https://doi.org/10.2118/113976-MS Lager A, Webb K, Collins I, Richmond DM (2008) SPE/DOE improved oil recovery symposium. https://doi.org/10.2118/113976-MS Lashkarbolooki M, Ayatollahi S, Riazi M (2014) . Energy and Fuels 28(11):6820. https://doi.org/10.1021/ef5015692 Lashkarbolooki M, Riazi M, Hajibagheri F, Ayatollahi S (2016) . J Mol Liq 216:377. https://doi.org/10.1016/j.molliq.2016.01.051 Lima SA, Murad MA, Domingues R, Computac ND (2017) SPE international Liu H, Zhang S, Song G, Zhang S, Hao X, Xie Z, Xu N, Liu P (2017) . J Earth Sci 28 (6):1064. https://doi.org/10.1007/s12583-016-0946-3 Luo Y, Roux B (2010) . J Phys Chem Lett 1(1):183. https://doi.org/10.1021/jz900079w Marcus Y (2010) . Pure Appl Chem 82(10):1889. https://doi.org/10.1351/PAC-CON-09-07-02. http://www.degruyter.com/view/j/pac.2010.82.issue-10/pac-con-09-07-02/pac-con-09-07-02.xml Markgraf SA, Reeder RJ (1985) . Am Mineral 70:590 McGuire PL, Chatham JR, Paskvan FK, Sommer DM, Carini FH (2005) SPE-93903-MS (Society of Petroleum Engineers, Irvine, California), chap. Low salinity oil recovery: an Exciting New EOR Opportunity for Alaska’s North Slope, p 15. https://doi.org/10.2118/93903-MS Mercure JF, Pollitt H, Viñuales JE, Edwards NR, Holden PB, Chewpreecha U, Salas P, Sognnaes I, Lam A, Knobloch F (2018) Nature climate change ASAP. https://doi.org/10.1038/s41558-018-0182-1 Mikami Y, Liang Y, Matsuoka T, Boek ES (2013) . Energy and Fuels 27(4):1838. https://doi.org/10.1021/ef301610q Mohammadkhani S, Shahverdi H, Esfahany MN (2018) . J Geophys Eng 15(4):1242 Mohammed M, Babadagli T (2015) . Adv Colloid Interface Sci 220:54. https://doi.org/10.1016/j.cis.2015.02.006. http://www.sciencedirect.com/science/article/pii/S0001868615000421 Morad S, Al-Aasm IS, Sirat M, Sattar MM (2010) J Geochem Explor. https://doi.org/10.1016/j.gexplo.2010.03.002 Mugele F, Bera B, Cavalli A, Siretanu I, Maestro A, Duits M, Cohen-Stuart M, Van Den Ende D, Stocker I, Collins I (2015) . Scientific Reports 5:10519. https://doi.org/10.1038/srep10519 Nghiem L, Sammon P, Grabenstetter J, Ohkuma H (2004) Soc Pet Eng J. https://doi.org/10.2118/89474-MS Nguyen NTB, Dang CTQ, Nghiem L, Chen Z (2016) SPE-180107-MS (Society of petroleum engineers, Vienna, Austria), chap. Geochemical interpretation and field scale optimization of low salinity water flooding, p 22 https://doi.org/10.2118/180107-MS Oliveira MA, Vaz A, Siqueira FD, Yang Y, You Z, Bedrikovetsky P (2014) . J Pet Sci Eng 122:534. https://doi.org/10.1016/j.petrol.2014.08.019 Paritosh F, Murad S (1996) . AIChE J 42(10):2984. https://doi.org/10.1002/aic.690421026 Pavese A, Catti M, Parker SC, Wall A (1996) . Phys Chem Miner 23(2):89. https://doi.org/10.1007/BF00202303 Plimpton S (1995) . J Comput Phys 117(1):1. https://doi.org/10.1006/jcph.1995.1039 Puntervold T, Austad T (2008) . J Petrol Sci Eng 63(1–4):23. https://doi.org/10.1016/j.petrol.2008.07.010 Raiteri P, Gale JD, Quigley D, Rodger PM (2010) . J Chem Phys 114:5997. https://doi.org/10.1021/jp910977a. https://pubs.acs.org/sharingguidelines Rezaeidoust A (2011) Low salinity water flooding in sandstone reservoirs. Ph.D. thesis, University of Stavanger Rezaeidoust A, Puntervold T, Strand S, Austad T (2009) . Energy and Fuels 23(9):4479. https://doi.org/10.1021/ef900185q Rigo VA, Metin CO, Nguyen QP, Miranda CR (2012) . J Phys Chem C 116(46):24538. https://doi.org/10.1021/jp306040n Rivet S, Lake LW, Pope GA (2010) SPE annual technical conference and exhibition, pp 19–22. https://doi.org/10.2118/134297-MS Roth R (2010) . J Phys Condens Matter 22(6):063102. http://stacks.iop.org/0953-8984/22/i=6/a=063102 Rudisill E, Cummings P (1989) . Mol Phys 68(3):629. https://doi.org/10.1080/00268978900102411 Russell T, Pham D, Neishaboor MT, Badalyan A, Behr A, Genolet L, Kowollik P, Zeinijahromi A, Bedrikovetsky P (2017) . J Nat Gas Sci Eng 45:243. https://doi.org/10.1016/j.jngse.2017.05.020 Rutqvist J (2012) . Geotech Geol Eng 30(3):525. https://doi.org/10.1007/s10706-011-9491-0 Sakuma H, Andersson MP, Bechgaard K, Stipp SL (2014) . J Phys Chem C 118(6):3078 Sánchez VM, Miranda CR (2014) . J Phys Chem C 118(33):19180. https://doi.org/10.1021/jp505259t Sandengen K, Kristoffersen A, Melhuus K, Jøsang LO (2016) SPE Journal. https://doi.org/10.2118/179741-PA Sari A, Xie Q, Chen Y, Saeedi A, Pooryousefy E (2017) . Energy and Fuels 31(9):8951. https://doi.org/10.1021/acs.energyfuels.7b00966 Satoshi Endo AP, Goss KU (2012) . Environ Sci Technol 46:1496 Schröder KP, Sauer J, Leslie M, Richard C, Catlow A, Thomas JM (1992) . Chem Phys Lett 188(3-4):320. https://doi.org/10.1016/0009-2614(92)90030-Q Sedghi M, Piri M, Goual L (2016) . Langmuir 32(14):3375. https://doi.org/10.1021/acs.langmuir.5b04713 Sharma MM, Yortsos YC (1987) . AIChE J 33(10):1654. https://doi.org/10.1002/aic.690331009 Sheng JJ (2014) . J Petrol Sci Eng 120(October):216. https://doi.org/10.1016/j.petrol.2014.05.026 Sheng JJ (2015) . Petroleum 1 (1):31. https://doi.org/10.1016/j.petlm.2015.04.004. http://www.sciencedirect.com/science/article/pii/S2405656115000127 http://www.sciencedirect.com/science/article/pii/S2405656115000127 Sohrabi M, Mahzari P, Farzaneh SA, Mills JR, Tsolis P, Ireland S (2015) Novel insights into mechanisms of oil recovery by low salinity water injection. Tech. rep Song W, Kovscek AR (2016) . J Nat Gas Sci Eng 34:1276. https://doi.org/10.1016/j.jngse.2016.07.055 Suchý V, Dobeš P, Sýkorová I, Machovič V, Stejskal M, Kroufek J, Chudoba J, Matějovský L, Havelcová M, Matysová P (2010) . Mar Pet Geol 27:285. https://doi.org/10.1016/j.marpetgeo.2009.08.017 Tang GQ, Morrow NR (1999) . J Pet Sci Eng 24(2–4):99. https://doi.org/10.1016/S0920-4105(99)00034-0 Tribello GA, Bruneval F, Liew C, Parrinello M (2009) . J Phys Chem B 113(34):11680. https://doi.org/10.1021/jp902606x Verwey EJ, Overbeek TG (1948) Theory of the stability of lyophobic colloids. Elsevier, New York Vialle S, Vanorio T, Mavko G (2010) . SEG Technical Program Expanded Abstracts 29(1):2692. https://doi.org/10.1190/1.3513402 Wang J, Wang W, Kollman PA, Case DA (2006) . J Mol Graph Model 25(2):247. https://doi.org/10.1016/j.jmgm.2005.12.005 Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) . J Comput Chem 25(9):1157. https://doi.org/10.1002/jcc.20035 Webb K, Black C, Al-Ajeel H (2004) Middle east oil show. https://doi.org/10.2118/89379-MS Webb K, Lager A, Black C (2008) Society of core analysts, pp 1–12 Winoto W, Loahardjo N, Xie SX, Yin P, Morrow NR (2012) Yang Z, Yang X, Xu Z (2008) . J Membr Sci 320(1–2):381. https://doi.org/10.1016/j.memsci.2008.04.021 Yang G, Neretnieks I, Moreno L, Wold S (2016) . Appl Clay Sci 561:132–133. https://doi.org/10.1016/j.clay.2016.08.006 Yang Y, Siqueira FD, Vaz A, You Z, Bedrikovetsky P (2016) . J Nat Gas Sci Eng 34:1159. https://doi.org/10.1016/j.jngse.2016.07.056 Yi Z, Sarma HK (2012) Abu Dhabi international petroleum conference and exhibition. https://doi.org/10.2118/161631-MS Zahid A, Shapiro AA, Skauge A (2012) SPE EOR conference at oil and gas West Asia. https://doi.org/10.2118/155625-MS Zeinijahromi A, Lemon P, Bedrikovetsky P (2011) . J Pet Sci Eng 78(3-4):609. https://doi.org/10.1016/j.petrol.2011.08.005 Zeinijahromi A, Farajzadeh R, Bruining J, Bedrikovetsky P (2016) . Fuel 176:222. https://doi.org/10.1016/j.fuel.2016.02.066 Zhang Y, Morrow NR (2006) SPE/DOE symposium on improved oil recovery. https://doi.org/10.2118/99757-MS Zhang P, Tweheyo MT, Austad T (2007) . Colloids Surf A Physicochem Eng Asp 301(1):199. https://doi.org/10.1016/j.colsurfa.2006.12.058