Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Từ Nguyên Tử đến Các Nguồn Dầu Trước Muối: Mô Hình Đa Thang về Các Cơ Chế Tăng Cường Khai Thác Dầu Từ Nước Muối Thấp
Tóm tắt
Mục tiêu của bài báo tổng quan này là hai mặt: cung cấp một khảo sát cập nhật về tài liệu liên quan đến các cơ chế được đề xuất đứng sau việc khai thác dầu tăng cường bằng nước muối thấp (EOR) và đề xuất các cách thức mô hình hóa chúng dựa trên mô phỏng kết hợp từ quy mô nguyên tử đến quy mô bể chứa. Việc bơm nước muối thấp (LSWI) có một số lợi thế so với các kỹ thuật EOR khác vì đây là một phương pháp tiết kiệm chi phí, không gây ra tổn hại môi trường và không ảnh hưởng đến các giai đoạn xử lý và tinh chế dầu thô sau này. LSWI đặc biệt thú vị cho việc thăm dò và sản xuất trên các bể chứa carbonat trước muối. Chúng tôi kết hợp các cơ chế LSWI với các phương pháp mô hình hóa phân tử, giải quyết sự sử dụng của chúng để mô tả EOR thông qua LSWI. Từ việc mô hình hóa phân tử, người ta có thể thu được các tham số cho các mô phỏng bể chứa quy mô lớn, từ đó cải thiện độ chính xác của chúng. Do đó, các phương pháp mô hình hóa phân tử là các công cụ bổ trợ để tối ưu hóa EOR thông qua LSWI. Trong tất cả các cơ chế liên quan đến LSWI, sự thay đổi độ ẩm bề mặt được chỉ ra bởi một số tác giả là cơ chế cơ bản cần thiết để giải thích EOR. Tuy nhiên, vẫn còn những tranh cãi liên quan đến nguyên nhân của nó: hiệu ứng muối, sự trao đổi ion đa thành phần, sự thay đổi pH, sự mở rộng của lớp điện kép, sự di cư của các hạt tinh vi, sự giải phóng hạn chế của các hạt và áp lực thẩm thấu là một trong những đề xuất chính. Trong bối cảnh này, nhiều kỹ thuật mô hình hóa phân tử đã được khám phá để thúc đẩy các lý thuyết giải thích các cơ chế có thể và tối ưu hóa sản xuất dầu bằng cách kết hợp các mô phỏng động lực học phân tử và tính toán Ab initio với các mô phỏng bể chứa.
Từ khóa
#khai thác dầu #mô hình hóa phân tử #bơm nước muối thấp #tăng cường khai thác dầu #mô phỏng đa thangTài liệu tham khảo
Aksulu H, Håmsø D, Strand S, Puntervold T, Austad T (2012) . Energy and Fuels 26(6):3497. https://doi.org/10.1021/ef300162n
Alejandre J, Tildesley DJ, Chapela GA (1995) . J Chem Phys 102(11):4574. https://doi.org/10.1063/1.469505
Alhammadi M, Mahzari P, Sohrabi M (2017) Experimental investigation of the underlying mechanism behind improved oil recovery by low salinity water injection in carbonate reservoir rocks. https://doi.org/10.2118/188352-MS
Alshakhs MJ, Kovscek AR (2016) . Adv Colloid Interf Sci 233:126. https://doi.org/10.1016/j.cis.2015.08.004
Alvim RS, Lima FCDA, Sánchez VM, Headen TF, Boek ES, Miranda CR (2016) . RSC Adv 6(97):95328. http://xlink.rsc.org/?DOI=C6RA19307B
Andersson MP, Dideriksen K, Sakuma H, Stipp SL (2016) . Sci Rep 6(November 2015):1
Andreussi O, Dabo I, Marzari N (2012) . J Chem Phys 136(6):064102. https://doi.org/10.1063/1.3676407
Arsalan N, Palayangoda SS, Burnett DJ, Buiting JJ, Nguyen QP (2013) . Colloids Surf A Physicochem Eng Asp 436:139. https://doi.org/10.1016/j.colsurfa.2013.06.004
Astilleros JM, Pina CM, Fernández-Díaz L, Prieto M, Putnis A (2006) . Chem Geol 225 (3-4):322. https://doi.org/10.1016/j.chemgeo.2005.08.025
Ataman E, Andersson MP, Ceccato M, Bovet N, Stipp SL (2016) . J Phys Chem C 120(30):16597. https://doi.org/10.1021/acs.jpcc.6b01359
Austad T (2013) Water-based EOR in carbonates and sandstones: new chemical understanding of the EOR potential using “Smart Water”, first edit edn. Elsevier Inc. https://doi.org/10.1016/B978-0-12-386545-8.00013-0
Austad T, Rezaeidoust A, Puntervold T (2010) . Spe 129767 (September):19. https://doi.org/10.2118/129767-MS
Austad T, Shariatpanahi SF, Strand S, Black C, Webb K (2012) . Energy and Fuels 26(1):569. https://doi.org/10.1021/ef201435g
Bai C, Yu B, Liu H, Xie Z, Han S, Zhang L, Ye R, Ge J (2018) . Int J Coal Geol 189:8. https://doi.org/10.1016/j.coal.2018.02.008
Berendsen HJ, Grigera JR, Straatsma TP (1987) . J Phys Chem 91(24):6269. https://doi.org/10.1021/j100308a038
Berg JC (2009) An introduction to interfaces and colloids. World Scientific, Singapore. https://doi.org/10.1142/7579
Bernard GG (1967) SPE California regional meeting. https://doi.org/10.2118/1725-MS
Bevilaqua RC, Rigo VA, Veríssimo-Alves M, Miranda CR (2014) J. Chem. Phys. 141(20). https://doi.org/10.1063/1.4902251
Borazjani S, Behr A, Genolet L, Van Der Net A, Bedrikovetsky P (2017) . Transp Porous Media 116(1):213. https://doi.org/10.1007/s11242-016-0771-2
Bourdet J, Pironon J, Levresse G, Tritlla J (2010) Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2009.07.003
Bourg IC, Lee SS, Fenter P, Tournassat C (2017) . J Phys Chem C 2(17):9402. https://doi.org/10.1021/acs.jpcc.7b01828
Boussour S, Cissokho M, Cordier P, Bertin HJ, Hamon G (2009) SPE annual technical conference and exhibition, p 12. http://www.onepetro.org/doi/10.2118/124277-MS
Carrillo JMY, Dobrynin AV (2014) . Polymers 6(7):1897. https://doi.org/10.3390/polym6071897
Chandrasekhar S, Mohanty KK (2013) Wettability alteration with brine composition in high temperature carbonate reservoirs
Chang R (2008) General chemistry, the essential concepts, 5th edn. McGraw-Hill, New York. https://doi.org/10.1038/159590b0
Chequer L, Vaz A, Bedrikovetsky P (2018) . J Pet Sci Eng 165(January):1054. https://doi.org/10.1016/j.petrol.2018.01.012
Coon ET, Porter ML, Kang Q (2014) . Comput Geosci 18(1):17. https://doi.org/10.1007/s10596-013-9379-6
Coutinho K, Morgon NH (2007) Métodos de química teórica e modelagem molecular, editora da edn., São Paulo - SP, Brasil
Crocker M, Marchin L (1988) . J Petrol Tech 40(04):470. https://doi.org/10.2118/14885-PA. http://www.onepetro.org/doi/10.2118/14885-PA
Dang CTQ, Nghiem L, Chen ZJ, Nguyen QP (1995). In: SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2013). http://www.onepetro.org/doi/10.2118/166447-MS, p 21
de Leeuw NH, Harding JH, Parker SC (2002) Molecular dynamics simulations of the incorporation of Mg2+, Cd2+ and Sr2+ at calcite growth steps: Introduction of a SrCO3 potential model. Molecular Simulation 28(6–7):573–589. https://doi.org/10.1080/08927020290030143
Derjaguin B (1993) . Prog Surf Sci 43(1–4):1. https://doi.org/10.1016/0079-6816(93)90010-S
Derjaguin B, Landau LD (1941) Acta Phys. Chim. (14). https://doi.org/10.1016/0079-6816(93)90013-L
Derkani MH, Fletcher AJ, Abdallah W, Sauerer B, Anderson J, Zhang ZJ (2018) . Colloids and Interfaces 2(2):20. https://doi.org/10.3390/colloids2020020. http://www.mdpi.com/2504-5377/2/2/20
Ding H, Rahman S (2017) . Colloids Surf A Physicochem Eng Asp 520(February):622. https://doi.org/10.1016/j.colsurfa.2017.02.006
Ellila G (2012) Capillary forces and osmotic gradients in salt water -oil systems. Ph.D. thesis, Norwegian University of Science and Technology
Escamilla-Roa E, Sainz-Díaz CI, Huertas FJ, Hernández-Laguna A (2013) . J Phys Chem C 117 (34):17583. https://doi.org/10.1021/jp404529e
Fogden A, Kumar M, Morrow NR, Buckley JS (2011) . Energy and Fuels 25(4):1605. https://doi.org/10.1021/ef101572n
Fredriksen SB, Rognmo AU, Sandengen K, Fernø MA (2016) In: International symposium of the society of core analysts held in snowmass
Freeman CL, Harding JH, Cooke DJ, Elliott JA, Lardge JS, Duffy DM (2007) . J Phys Chem C 111(32):11943. https://doi.org/10.1021/jp071887p
Gaines GL, Thomas HC (1953) . J Chem Phys 21(4):714. https://doi.org/10.1063/1.1698996
Gandomkar A, Rahimpour MR (2015) . Energy and Fuels 29(12):7781. https://doi.org/10.1021/acs.energyfuels.5b01236
Germain P, Amokrane S (2002) . Phys Rev E 65:031109. https://doi.org/10.1103/PhysRevE.65.031109
Ghosh B, Sun L, Osisanya S (2016) International petroleum technology conference, pp 14–16
Gillespie D, Khair AS, Bardhan JP, Pennathur S (2011) . J Colloid Interface Sci 359(2):520. https://doi.org/10.1016/j.jcis.2011.03.088
Harding JH, Parker SC (1999) . Phys Rev B: Condens Matter Mater Phys 60 (19):13792. https://doi.org/10.1103/PhysRevB.60.13792
Headen TF, Boek ES (2011) . Energy and Fuels 25(2):499. https://doi.org/10.1021/ef1010385
Hilner E, Andersson MP, Hassenkam T, Matthiesen J, Salino PA, Stipp SLS (2015) . Scientific Reports 5:9933 EP. Article
Hohenberg P, Kohn W (1964) . Phys Rev 136:B864
Hyde AM, Zultanski SL, Waldman JH, Zhong YL, Shevlin M, Peng F (2017) . Org Process Res Dev 21(9):1355. https://doi.org/10.1021/acs.oprd.7b00197
Jen Chen I, Yin D, MacKerell AD (2002) . J Comput Chem 23(2):199. https://doi.org/10.1002/jcc.1166
Jerauld GR, Lin CY, Webb K, Seccombe JC (2006) In: SPE annual technical conference and exhibition (Society of Petroleum Engineers). https://doi.org/10.2118/102239-MS
Jiang G, Cheng C, Li D, Liu JZ (2016) . Nano Res 9(1):174. https://doi.org/10.1007/s12274-015-0978-5
Jones FO (1963) Journal of Petroleum Technology, pp 441–446. https://doi.org/10.2118/631-PA
Karimi M, Al-Maamari RS, Ayatollahi S, Mehranbod N (2016) J Petrol Sci Eng 560–569. https://doi.org/10.1016/j.petrol.2016.09.015
Kástner J (2011) . Wiley Interdiscip Rev.: Comput Mol Sci 1(6):932. https://doi.org/10.1002/wcms.66
Kazemi Nia Korrani A, Jerauld GR, Sepehrnoori K (2016) . SPE Reserv Eval Eng 19(01):142. http://www.onepetro.org/doi/10.2118/169115-PA
Kirch A, Mutisya SM, Sánchez VM, De Almeida JM, Miranda CR (2018) . J Phys Chem C 122 (11):6117. https://doi.org/10.1021/acs.jpcc.7b12582
Klauda JB, Brooks BR, MacKerell AD, Venable RM, Pastor RW (2005) . J Phys Chem B 109 (11):5300. https://doi.org/10.1021/jp0468096
Kobayashi K, Liang Y, Murata S, Matsuoka T, Takahashi S, Nishi N, Sakka T (2017a) Ion Distribution and Hydration Structure in the Stern Layer on Muscovite Surface. Langmuir 33(15):3892–3899. https://doi.org/10.1021/acs.langmuir.7b00436
Kobayashi K, Liang Y, Murata S, Matsuoka T, Takahashi S, Amano KI, Nishi N, Sakka T (2017b) . J Phys Chem C 121(17):9273. https://doi.org/10.1021/acs.jpcc.6b12116
Kohn W, Becke AD, Parr RG (1996) . J Phys Chem 0(96):12974. http://pubs.acs.org/doi/pdfplus/10.1021/jp960669l
Kohn W, Sham LJ (1965) . Phys Rev 140:A1133
Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) . J Comput Chem 13 (8):1011. https://doi.org/10.1002/jcc.540130812
Kunieda M, Nakaoka K, Liang Y, Miranda CR, Ueda A, Takahashi S, Okabe H, Matsuoka T (2010) . J Am Chem Soc 137:18281. https://doi.org/10.1021/ja107519d
Lager A, Webb K, Black CJJ, Singleton M, Sorbie KS (2006) In: International symposium of the society of core analysts, pp 1–12. https://doi.org/SPWLA-2008-v49n1a2
Lager A, Webb K, Collins I, Richmond DM (2008) SPE-113976-MS (Society of Petroleum Engineers), chap. LoSal Enhanced oil recovery: evidence of enhanced oil recovery at the reservoir scale. https://doi.org/10.2118/113976-MS
Lager A, Webb K, Collins I, Richmond DM (2008) SPE/DOE improved oil recovery symposium. https://doi.org/10.2118/113976-MS
Lashkarbolooki M, Ayatollahi S, Riazi M (2014) . Energy and Fuels 28(11):6820. https://doi.org/10.1021/ef5015692
Lashkarbolooki M, Riazi M, Hajibagheri F, Ayatollahi S (2016) . J Mol Liq 216:377. https://doi.org/10.1016/j.molliq.2016.01.051
Lima SA, Murad MA, Domingues R, Computac ND (2017) SPE international
Liu H, Zhang S, Song G, Zhang S, Hao X, Xie Z, Xu N, Liu P (2017) . J Earth Sci 28 (6):1064. https://doi.org/10.1007/s12583-016-0946-3
Luo Y, Roux B (2010) . J Phys Chem Lett 1(1):183. https://doi.org/10.1021/jz900079w
Marcus Y (2010) . Pure Appl Chem 82(10):1889. https://doi.org/10.1351/PAC-CON-09-07-02. http://www.degruyter.com/view/j/pac.2010.82.issue-10/pac-con-09-07-02/pac-con-09-07-02.xml
Markgraf SA, Reeder RJ (1985) . Am Mineral 70:590
McGuire PL, Chatham JR, Paskvan FK, Sommer DM, Carini FH (2005) SPE-93903-MS (Society of Petroleum Engineers, Irvine, California), chap. Low salinity oil recovery: an Exciting New EOR Opportunity for Alaska’s North Slope, p 15. https://doi.org/10.2118/93903-MS
Mercure JF, Pollitt H, Viñuales JE, Edwards NR, Holden PB, Chewpreecha U, Salas P, Sognnaes I, Lam A, Knobloch F (2018) Nature climate change ASAP. https://doi.org/10.1038/s41558-018-0182-1
Mikami Y, Liang Y, Matsuoka T, Boek ES (2013) . Energy and Fuels 27(4):1838. https://doi.org/10.1021/ef301610q
Mohammadkhani S, Shahverdi H, Esfahany MN (2018) . J Geophys Eng 15(4):1242
Mohammed M, Babadagli T (2015) . Adv Colloid Interface Sci 220:54. https://doi.org/10.1016/j.cis.2015.02.006. http://www.sciencedirect.com/science/article/pii/S0001868615000421
Morad S, Al-Aasm IS, Sirat M, Sattar MM (2010) J Geochem Explor. https://doi.org/10.1016/j.gexplo.2010.03.002
Mugele F, Bera B, Cavalli A, Siretanu I, Maestro A, Duits M, Cohen-Stuart M, Van Den Ende D, Stocker I, Collins I (2015) . Scientific Reports 5:10519. https://doi.org/10.1038/srep10519
Nghiem L, Sammon P, Grabenstetter J, Ohkuma H (2004) Soc Pet Eng J. https://doi.org/10.2118/89474-MS
Nguyen NTB, Dang CTQ, Nghiem L, Chen Z (2016) SPE-180107-MS (Society of petroleum engineers, Vienna, Austria), chap. Geochemical interpretation and field scale optimization of low salinity water flooding, p 22 https://doi.org/10.2118/180107-MS
Oliveira MA, Vaz A, Siqueira FD, Yang Y, You Z, Bedrikovetsky P (2014) . J Pet Sci Eng 122:534. https://doi.org/10.1016/j.petrol.2014.08.019
Paritosh F, Murad S (1996) . AIChE J 42(10):2984. https://doi.org/10.1002/aic.690421026
Pavese A, Catti M, Parker SC, Wall A (1996) . Phys Chem Miner 23(2):89. https://doi.org/10.1007/BF00202303
Plimpton S (1995) . J Comput Phys 117(1):1. https://doi.org/10.1006/jcph.1995.1039
Puntervold T, Austad T (2008) . J Petrol Sci Eng 63(1–4):23. https://doi.org/10.1016/j.petrol.2008.07.010
Raiteri P, Gale JD, Quigley D, Rodger PM (2010) . J Chem Phys 114:5997. https://doi.org/10.1021/jp910977a. https://pubs.acs.org/sharingguidelines
Rezaeidoust A (2011) Low salinity water flooding in sandstone reservoirs. Ph.D. thesis, University of Stavanger
Rezaeidoust A, Puntervold T, Strand S, Austad T (2009) . Energy and Fuels 23(9):4479. https://doi.org/10.1021/ef900185q
Rigo VA, Metin CO, Nguyen QP, Miranda CR (2012) . J Phys Chem C 116(46):24538. https://doi.org/10.1021/jp306040n
Rivet S, Lake LW, Pope GA (2010) SPE annual technical conference and exhibition, pp 19–22. https://doi.org/10.2118/134297-MS
Roth R (2010) . J Phys Condens Matter 22(6):063102. http://stacks.iop.org/0953-8984/22/i=6/a=063102
Rudisill E, Cummings P (1989) . Mol Phys 68(3):629. https://doi.org/10.1080/00268978900102411
Russell T, Pham D, Neishaboor MT, Badalyan A, Behr A, Genolet L, Kowollik P, Zeinijahromi A, Bedrikovetsky P (2017) . J Nat Gas Sci Eng 45:243. https://doi.org/10.1016/j.jngse.2017.05.020
Rutqvist J (2012) . Geotech Geol Eng 30(3):525. https://doi.org/10.1007/s10706-011-9491-0
Sakuma H, Andersson MP, Bechgaard K, Stipp SL (2014) . J Phys Chem C 118(6):3078
Sánchez VM, Miranda CR (2014) . J Phys Chem C 118(33):19180. https://doi.org/10.1021/jp505259t
Sandengen K, Kristoffersen A, Melhuus K, Jøsang LO (2016) SPE Journal. https://doi.org/10.2118/179741-PA
Sari A, Xie Q, Chen Y, Saeedi A, Pooryousefy E (2017) . Energy and Fuels 31(9):8951. https://doi.org/10.1021/acs.energyfuels.7b00966
Satoshi Endo AP, Goss KU (2012) . Environ Sci Technol 46:1496
Schröder KP, Sauer J, Leslie M, Richard C, Catlow A, Thomas JM (1992) . Chem Phys Lett 188(3-4):320. https://doi.org/10.1016/0009-2614(92)90030-Q
Sedghi M, Piri M, Goual L (2016) . Langmuir 32(14):3375. https://doi.org/10.1021/acs.langmuir.5b04713
Sharma MM, Yortsos YC (1987) . AIChE J 33(10):1654. https://doi.org/10.1002/aic.690331009
Sheng JJ (2014) . J Petrol Sci Eng 120(October):216. https://doi.org/10.1016/j.petrol.2014.05.026
Sheng JJ (2015) . Petroleum 1 (1):31. https://doi.org/10.1016/j.petlm.2015.04.004. http://www.sciencedirect.com/science/article/pii/S2405656115000127 http://www.sciencedirect.com/science/article/pii/S2405656115000127
Sohrabi M, Mahzari P, Farzaneh SA, Mills JR, Tsolis P, Ireland S (2015) Novel insights into mechanisms of oil recovery by low salinity water injection. Tech. rep
Song W, Kovscek AR (2016) . J Nat Gas Sci Eng 34:1276. https://doi.org/10.1016/j.jngse.2016.07.055
Suchý V, Dobeš P, Sýkorová I, Machovič V, Stejskal M, Kroufek J, Chudoba J, Matějovský L, Havelcová M, Matysová P (2010) . Mar Pet Geol 27:285. https://doi.org/10.1016/j.marpetgeo.2009.08.017
Tang GQ, Morrow NR (1999) . J Pet Sci Eng 24(2–4):99. https://doi.org/10.1016/S0920-4105(99)00034-0
Tribello GA, Bruneval F, Liew C, Parrinello M (2009) . J Phys Chem B 113(34):11680. https://doi.org/10.1021/jp902606x
Verwey EJ, Overbeek TG (1948) Theory of the stability of lyophobic colloids. Elsevier, New York
Vialle S, Vanorio T, Mavko G (2010) . SEG Technical Program Expanded Abstracts 29(1):2692. https://doi.org/10.1190/1.3513402
Wang J, Wang W, Kollman PA, Case DA (2006) . J Mol Graph Model 25(2):247. https://doi.org/10.1016/j.jmgm.2005.12.005
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) . J Comput Chem 25(9):1157. https://doi.org/10.1002/jcc.20035
Webb K, Black C, Al-Ajeel H (2004) Middle east oil show. https://doi.org/10.2118/89379-MS
Webb K, Lager A, Black C (2008) Society of core analysts, pp 1–12
Winoto W, Loahardjo N, Xie SX, Yin P, Morrow NR (2012)
Yang Z, Yang X, Xu Z (2008) . J Membr Sci 320(1–2):381. https://doi.org/10.1016/j.memsci.2008.04.021
Yang G, Neretnieks I, Moreno L, Wold S (2016) . Appl Clay Sci 561:132–133. https://doi.org/10.1016/j.clay.2016.08.006
Yang Y, Siqueira FD, Vaz A, You Z, Bedrikovetsky P (2016) . J Nat Gas Sci Eng 34:1159. https://doi.org/10.1016/j.jngse.2016.07.056
Yi Z, Sarma HK (2012) Abu Dhabi international petroleum conference and exhibition. https://doi.org/10.2118/161631-MS
Zahid A, Shapiro AA, Skauge A (2012) SPE EOR conference at oil and gas West Asia. https://doi.org/10.2118/155625-MS
Zeinijahromi A, Lemon P, Bedrikovetsky P (2011) . J Pet Sci Eng 78(3-4):609. https://doi.org/10.1016/j.petrol.2011.08.005
Zeinijahromi A, Farajzadeh R, Bruining J, Bedrikovetsky P (2016) . Fuel 176:222. https://doi.org/10.1016/j.fuel.2016.02.066
Zhang Y, Morrow NR (2006) SPE/DOE symposium on improved oil recovery. https://doi.org/10.2118/99757-MS
Zhang P, Tweheyo MT, Austad T (2007) . Colloids Surf A Physicochem Eng Asp 301(1):199. https://doi.org/10.1016/j.colsurfa.2006.12.058
