From AI ethics principles to data science practice: a reflection and a gap analysis based on recent frameworks and practical experience
Tóm tắt
Từ khóa
Tài liệu tham khảo
AI HLEG: Ethics guidelines for trustworthy AI. AI HLEG (2019)
AI HLEG.: Assessment list for trustworthy Artificial Intelligence. https://ec.europa.eu/digital-single-market/en/news/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment (2020)
Aizenberg, E., Van den Hoven, J.: Designing for human rights in AI. Big Data Soc. (2020). https://doi.org/10.1177/2053951720949566
Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R. and Chatila, R., 2020. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115
Aydemir, F. B., Dalpiaz, F.: A roadmap for ethics-aware software engineering. In: 2018 IEEE/ACM international workshop on software fairness (FairWare). IEE. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8452915 (2018)
Baskerville, R. L.: Investigating information systems with action research. Communications of the association for information systems. 2 (1999): 19
Borgesius, F.J.Z.: Strengthening legal protection against discrimination by algorithms and artificial intelligence. Int. J. Hum. Rights 24(10), 1572–1593 (2020). https://doi.org/10.1080/13642987.2020.1743976
Bradford, A.: The Brussels effect: how the European Union Rules the World. Oxford University Press, Oxford (2019)
Brattberg, E., Csernatoni, R., Rugova, V.: Europe and AI: leading, lagging behind, or carving its own way? Carnegie Endowment for International Peace, Washington (2020)
Brown, S., Davidovic, J., Hasan, A.: The algorithm audit: scoring the algorithms that score us. Big Data Soc. (2021). https://doi.org/10.1177/2053951720983865
Brun, Y., Meliou, A.: Software fairness. In: Proceedings of the 26th ACM joint European software engineering conference and sympo-sium on the foundations of software engineering (ESEC/FSE ’18), pp. 754–59. (2018). https://doi.org/10.1145/3236024.3264838
Canca, C.: Computing ethics: operationalizing AI ethics principles. Commun. ACM 63(12), 18–21 (2020). https://doi.org/10.1145/3430368
Clarke, A.E., Star, S.L.: The social worlds framework: a theory/methods package. In: Hackett, E.J., Amsterdamska, O., Lynch, M., Wajcman, J. (eds.) The handbook of science and technology studies, 3rd edn., pp. 113–137. MIT Press, Cambridge (2008)
Dafoe, A.: On technological determinism: a typology, scope conditions, and a mechanism. Sci. Technol. Hum. Values 40(6), 1047–1076 (2015). https://doi.org/10.1177/0162243915579283
Dheu, O.: EU report on AI, new technologies and liability: key take-aways and limitations. Leuven. https://lirias.kuleuven.be/2937017 (2020)
Donovan, J., Caplan, R., Matthews, J., Hanson, L. Algorithmic accountability: a primer. In: Data and society tech algorithm briefing: how algorithms perpetuate racial bias and inequality. Washington, DC. https://ssrn.com/abstract=3518482 (2018). Accessed 30 Nov 2021
EC.: Building trust in human-centric artificial intelligence. Brussels. https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=58496 (2019). Accessed 30 Nov 2021
Eitel-Porter, R.: Beyond the promise: implementing ethical AI. AI Ethics 1(1), 73–80 (2021). https://doi.org/10.1007/s43681-020-00011-6
Enholm, I.M., Papagiannidis, E., Mikalef, P., Krogstie, J.: Artificial intelligence and business value: a literature review. Inf. Syst. Front. (2021). https://doi.org/10.1007/S10796-021-10186-W/TABLES/8
Figueras, C., Verhagen, H., Pargman, T. C.: Trustworthy AI for the people? In: AIES 2021—proceedings of the 2021 AAAI/ACM conference on AI, ethics, and society, pp. 269–70. (2021). https://doi.org/10.1145/3461702.3462470
Fjeld, J., Achten, N., Hilligoss, H., Nagy, A. C., Srikumar, M. Principled Artificial Intelligence: mapping consensus in ethical and rights-based approaches to principles for A. No. 2020-1. The Berkman Klein Center for internet and society research publication series. https://ssrn.com/abstract=3518482 (2020). Accessed 30 Nov 2021
Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., et al.: AI4People—an ethical framework for a good AI society: opportunities, risks, principles, and recommendations. Mind. Mach. 28(4), 689–707 (2018). https://doi.org/10.1007/s11023-018-9482-5
Gabriel, I.: Artificial intelligence, values, and alignment. Mind. Mach. 30, 411–437 (2020). https://doi.org/10.1007/s11023-020-09539-2
Green, B. Data science as political action: grounding data science in a politics of justice. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3658431 (2020). Accessed 30 Nov 2021
Greene, D., Hoffmann, A. L., Stark, L. Better, nicer, clearer, fairer: a critical assessment of the movement for ethical artificial intelligence and machine learning. In: Proceedings of the 52th Hawaii international conference on system sciences, pp. 2122–31. https://hdl.handle.net/10125/59651 (2019)
Hagendorff, T.: AI virtues—the missing link in putting AI ethics into practice. arXiv e-prints (2020): arXiv-2011
Hickman, E., Petrin, M.: Trustworthy AI and Corporate Governance: the EU’s ethics guidelines for trustworthy artificial intelligence from a company law perspective. Springer (2021). https://doi.org/10.1007/s40804-021-00224-0
Hickok, M.: Lessons learned from AI ethics principles for future actions. AI Ethics 1(1), 41–47 (2021). https://doi.org/10.1007/s43681-020-00008-1
Hoekstra, M., Chideock, C., Van Veenstra, A. F.: Quick scan AI in Publieke Dienstverlening II (2021). https://www.rijksoverheid.nl/documenten/rapporten/2021/05/20/quickscan-ai-in-publieke-dienstverlening-ii
Holstein, K., Vaughan, J. W., Daumé, H., Dudík, M., Wallach, H.: Improving fairness in machine learning systems: what do industry practitioners need?” In: Conference on human factors in computing systems—proceedings. (2019). https://doi.org/10.1145/3290605.3300830
van den Hoven, M. J., Vermaas, P. E., van de Poel, I.: Handbook of ethics, values, and technological design—sources, theory, values and application domains. In: van den Hoven, M. J., Vermaas, P. E., van de Poel, I. (eds.), Springer. https://www.springer.com/gp/book/9789400769694 (2015). Accessed 30 Nov 2021
Huang, J.Y., Gupta, A., Youn, M.: Survey of EU ethical guidelines for commercial AI: case studies in financial services. AI Ethics 1(4), 569–577 (2021). https://doi.org/10.1007/s43681-021-00048-1
IEEE Computer Society.: Guide to the software engineering body of knowledge (SWEBOK). In: Bourque, P. Fairley, R. E. (eds.), 3rd edn. www.swebok.org (2014). Accessed 30 Nov 2021
Kiran, A.H., Oudshoorn, N., Verbeek, P.-P.: Beyond checklists: toward an ethical-constructive technology assessment. J. Responsib. Innov. 2(1), 5–19 (2015). https://doi.org/10.1080/23299460.2014.992769
Larsson, S.: On the Governance of artificial intelligence through ethics guidelines. Asian Journal of Law and Society 7, no.3 (2020): 437-451
Lauer, D.: Facebook’s ethical failures are not accidental; they are part of the business model. AI Ethics 1(4), 395–403 (2021). https://doi.org/10.1007/S43681-021-00068-X
Marx, M.R.S.L.: Does technology drive history?: The dilemma of technological determinism. MIT Press (1994)
Metcalf, J., Moss, E., Boyd, D.: Owning ethics: corporate logics, silicon valley, and the institutionalization of ethics. Soc. Res. Int. Q. 86(2), 449–476 (2019)
Metzinger T.: Ethics washing made in Europe. Der Tagesspiegel 8 (2019)
Mikalef, P., Gupta, M.: Artificial intelligence capability: conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Inf. Manag. 58(3), 103434 (2021). https://doi.org/10.1016/J.IM.2021.103434
Mittelstadt, B.: Principles alone cannot guarantee ethical AI. Nat. Mach. Intell. 1(11), 501–507 (2019)
Mittelstadt, B., Russell, C., Wachter, S.: Explaining explanations in AI. In: Proceedings of the conference on fairness, accountability, and transparency, pp. 279–88. (2019). https://doi.org/10.1145/3287560.3287574
Morley, J., Floridi, L., Kinsey, L., Elhalal, A.: From what to how: an initial review of publicly available AI ethics tools, methods and research to translate principles into practices. Sci. Eng. Ethics 26(4), 2141–2168 (2020). https://doi.org/10.1007/s11948-019-00165-5
Mougouei, D., Perera, H., Hussain, W., Shams, R., Whittle, J.: Operationalizing human values in software: a research roadmap. In: Proceedings of the 2018 26th ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering (2018). Accessed 30 Nov 2021
Nickelsburg, M.: Privacy becomes a selling point for tech, with Apple and Microsoft leading the way (2019). Retrieved from: https://www.geekwire.com/2019/privacy-becomes-selling-point-tech-companies-apple-microsoft-leading-way/. Accessed 26 Mar 2019
NL AI Coalitie.: AI Oversight Lab: Ontwikkelen van Betrouwbare AI-Algoritmen Voor Publieke Instanties. https://nlaic.com/use-cases/ai-oversight-lab-ontwikkelen-van-betrouwbare-ai-algoritmen-voor-publieke-instanties/ (2020). Accessed 30 Nov 2021
NOS.: Anti-Fraudesysteem SyRI Moet van Tafel, Overheid Maakt Inbreuk Op Privéleven. 05-02-2020. https://nos.nl/artikel/2321704-anti-fraudesysteem-syri-moet-van-tafel-overheid-maakt-inbreuk-op-priveleven.html (2020). Accessed 30 Nov 2021
OECD.: Artificial Intelligence in society. Paris. https://ictlogy.net/bibliography/reports/projects.php?idp=3874&lang=en (2019). Accessed 30 Nov 2021
Orr, W., Davis, J.L.: Attributions of ethical responsibility by artificial intelligence practitioners. Inf. Commun. Soc. 23(5), 719–735 (2020)
Reddy, E., Cakici, B., Ballestero, A.: Beyond mystery: putting algorithmic accountability in context. Big Data Soc (2019). https://doi.org/10.1177/2053951719826856
Rességuier, A., Rodrigues, R.: AI ethics should not remain toothless ! A call to bring back the teeth of ethics. Big Data Soc. (2020). https://doi.org/10.1177/2053951720942541
Rossi, F., Loreggia, A.: Preferences and ethical pri-orities: thinking fast and slow in AI. In: Proceedings of the 18th international conference on autonomous agents and multiagent systems (AAMAS 2019). Montreal: AAMAS. http://www.ifaamas.org (2019). Accessed 30 Nov 2021
Ryan, M., Stahl, B.C.: Artificial intelligence ethics guidelines for developers and users: clarifying their content and normative implications. J. Inf. Commun. Ethics Soc. (2020). https://doi.org/10.1108/JICES-12-2019-0138
Samoili, S., Cobo, M. L., Gómez, G., De Prato, E., Martínez-Plumed, F., Delipetrev, B.: AI watch—defining artificial intelligence. Towards an operational definition and taxonomy of artificial intelligence. In: Joint Research Centre (European Commission). Luxembourg: EUR 30117 EN, Publications Office of the European Union. (2020). https://doi.org/10.2760/382730
Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M., Crespo, J.-F., Dennison, D.: Hidden technical debt in machine learning systems. Adv. Neural. Inf. Process. Syst. 28, 2503–2511 (2015)
Shneiderman, B.: Bridging the gap between ethics and practice: guidelines for reliable, safe, and trustworthy human-centered AI systems. ACM Trans. Interact. Intell. Syst. 10(4), 1–31 (2020). https://doi.org/10.1145/3419764
Shneiderman, B.: Human-centered artificial intelligence: three fresh ideas. AIS Trans. Hum. Comput. Interact. 12(3), 109–124 (2020). https://doi.org/10.1775/1thci.00131
Stahl, B.C., Antoniou, J., Ryan, M., Macnish, K., Jiya, T.: Organisational responses to the ethical issues of artificial intelligence. AI Soc. (2021). https://doi.org/10.1007/s00146-021-01148-6
Steen, M., Van de Poel, I.: Making values explicit during the design process. IEEE Technol. Soc. Mag. 31(4), 63–72 (2012). https://doi.org/10.1109/MTS.2012.2225671
Stix, C.: Actionable principles for artificial intelligence policy: three pathways. Sci. Eng. Ethics 27(1), 1–17 (2021). https://doi.org/10.1007/s11948-020-00277-3
Trocin, C., Mikalef, P., Papamitsiou, Z., Conboy, K.: Responsible AI for digital health: a synthesis and a research agenda. Inf. Syst. Front. (2021). https://doi.org/10.1007/s10796-021-10146-4
Umbrello, S., van de Poel, I.: Mapping value sensitive design onto AI for social good principles. AI Ethics (2021). https://doi.org/10.1007/s43681-021-00038-3
Van de Poel, I.:Translating values into design requirements. In Philosophy and engineering: Reflections on practice, principles and process pp. 253–266. Springer, Dordrecht (2013)
Veale, M.: A critical take on the policy recommendations of the EU high-level expert group on artificial intelligence. European Journal of Risk Regulation (2020): 1–10
Vogelsang, A., Borg, M.: Requirements engineering for machine learning: perspectives from data scientists. In: 2019 IEEE 27th International requirements engineering conference workshops (REW). IEEE (2019)
Wagner, B.: Ethics as an escape from regulation: from ethics-washing to ethics-shopping. In Being Profiled, pp. 84–89. Amsterdam University Press, 2018
Wood, G., Rimmer, M.: Codes of ethics: what are they really and what should they be? Int. J. Value Based Manag. 16 (2003)
Xenidis, R. Informal conversation during a team meeting, (2021)
Yeung, K.: A study of the implications of advanced digital technologies (including AI systems) for the concept of responsibility within a human rights framework DRAFT. MSU-AUT (2018) 5