Fringing Capacitive Effect of Silicon Carbide Based Nano-Electro-Mechanical-System Micromachined Ultrasonic Transducers: Analytical Modeling and FEM Simulation

Transactions on Electrical and Electronic Materials - Tập 20 Số 5 - Trang 473-480 - 2019
Reshmi Maity1, N. P. Maity1, K. Srinivasa Rao2, Girija Sravani2, Koushik Guha3, Srimanta Baishya3
1Department of Electronics and Communication Engineering, Mizoram University (A Central University, Goverment of India), Aizawl, India
2Department of Electronics and Communication Engineering, K. L. University, Gunter, India
3Department of Electronics & Communication Engineering, National Institute of Technology, Silchar, India#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

F.L. Degertakin, R.O. Guldiken, M. Karaman, Annular ring CMUT arrays for forward-looking IVUS: transducer characterization and imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 474–482 (2006)

G. Gurun, P. Hasler, F.L. Degertakin, Front-end receiver electronics for high-frequency monolithic CMUT-on-CMOS imaging arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(8), 1658–1668 (2011)

A. Ramanaviciene, D. Virzonis, G. Vanagas, A. Ramanavicius, Capacitive micromachined ultrasound transducer (cMUT) for immunosensor design. Analyst 135(7), 1531–1534 (2010)

O. Naor, Y. Hertzberg, E. Zemel, E. Kimmel, S. Shoham, Towards multifocal ultrasonic neural stimulation II: design considerations for an acoustic retinal prosthesis. J. Neural Eng. 9(2), 026006 (2012)

M.D. Menz, O. Oralkan, P.T. Khuri-Yakub, S.A. Baccus, Precise neural stimulation in the retina using focused ultrasound. J. Neurosc. 33(10), 4550–4560 (2013)

F.Y. Yamaner, X. Zhang, O. Oralkan, A three mask process for fabricating vacuum sealed capacitive micromachined ultrasonic transducers using anodic bonding. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62, 972–982 (2015)

Q. Zhang, P.V. Cicek, K. Allidina, F. Nabki, M.N. El-Gamal, Surface micromachined CMUT using low-temperature deposited silicon carbide membranes for above IC integration. IEEE J. Microelectromech. Syst. 23, 482–493 (2014)

S.T. Hansen, A.S. Ergun, W. Liou, B.A. Auld, B.T. Khuri-Yakub, Wideband micromachined capacitive microphones with radio frequency detection. J. Acoust. Soc. Am. 116, 828–842 (2004)

M.L. Kuntzman, N.A. Hall, Rotational capacitive micromachined ultrasonic transducers (cMUTs). IEEE J. Microelectromech. Syst. 23(1), 1–3 (2014)

Q. Zhang, F.Y. Yamancer, O. Oralkan, Fabrication of vacuum-sealed-capacitive micromachined ultrasonic transducers with through glass via interconnects using anodic bonding. IEEE J. Microelectromech. Syst. 26(1), 226–234 (2017)

R. Maity, N.P. Maity, S. Baishya, Circular membrane approximation model with the effect of the finiteness of the electrode’s diameter of MEMS capacitive micromachined ultrasonic transducers. Microsyst. Technol. 23(8), 3513–3524 (2017)

R. Maity, N.P. Maity, S. Baishya, An improved analytical and finite element method model of nanoelectromechanical system based micromachined ultrasonic transducers. Microsyst. Technol. 23(6), 2163–2173 (2017)

R. Roy, O. Farhanieh, A. Ergun, A. Bozkurt, Fabrication of high-efficiency CMUTs with reduced parasitics using embedded metallic layers. IEEE Sens. J. 17(13), 4013–4020 (2017)

M. Cour, T. Christiansen, J. Jensen, E. Thomsen, Electrostatic and small-signal analysis of CMUTs with circular and square anisotropic plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(8), 1563–1579 (2015)

S. Na, Z. Zheng, A. Chen, L. Wong, Z. Li, J. Yeow, Design and fabrication of a high-power air-coupled capacitive micromachined ultrasonic transducer array with concentric annular cells. IEEE Trans. Electron Devices 64(11), 4636–4643 (2017)

F. Yildiz, T. Matsunanga, Y. Haga, Capacitive micromachined ultrasonic transducer arrays incorporating anodically bondable low temperature co-fired ceramic for small diameter ultrasonic endoscope. IET Micro Nano Lett. 11(10), 627–631 (2016)

W. N’Djin, B. Gerold, J. Bailly, M. Canney, A. Nguyen-Dinh, A. Carpentier, J. Chapelon, Capacitive micromachined ultrasound transducers for interstitial high-intensity ultrasound therapies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(8), 1245–1260 (2017)

A.S. Ergun, Y. Huang, X. Zhuang, O. Oralkan, G.G. Yaralioglu, B.T. Khuri-Yakub, Capacitive micromachined ultrasonic transducers: fabrication technology. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 2242–2258 (2005)

Y. Huang, A.S. Ergun, E. Haeggstrom, M.H. Badin, B.T. Khuri-Yakub, Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology. IEEE J. Microelectromech. Syst. 12, 128–137 (2003)

K.K. Park, H.J. Lee, M. Kupnik, O. Oralkan, B.T. Khuri-Yakub. Fabricating capacitive micromachined ultrasonic transducers with direct wafer-bonding and LOCOS technology, in IEEE MEMS Conference (2008), pp. 339–342

J. Liu, C. Oakley, R. Shandas, Capacitive micromachined ultrasonic transducers using commercial multi-user MUMPs process: capability and limitations. Ultrasonics 49(8), 765–773 (2009)

R. Maity, K. Gogoi, N. Maity. Micro-electro-mechanical-system based capacitive ultrasonic transducer as an efficient immersion sensor. Microsyst. Technol. (2019). https://doi.org/10.1007/s00542-019-04384-5

R. Maity, N. Maity, K. Guha, S. Baishya, Analysis of fringing capacitance effect on the performance of MEMS based micromachined ultrasonic transducer. IET Micro Nano Lett. 13(6), 872–877 (2018)

M. Pal, N. Maity, R. Maity. An improved displacement model for micro-electro-mechanical-system based ultrasonic transducer. Microsyst. Technol. (2019). https://doi.org/10.1007/s00542-019-04387-2

S. Burt, N. Finney, J. Young, Y. Ataiiyan. Fringing field parallel plate capacitor (Department of Engineering and Physics, Santa Rosa Junior College, 2018), pp. 1–8. www.santarosa.edu

R. Maity, N. P. Maity, K. Guha, S. Baishya. Analysis of spring softening effect on the collapse voltage of capacitive MEMS ultrasonic transducers. Microsyst.Technol. (2018). https://doi.org/10.1007/s00542-018-4040-x

R. Maity, N. P. Maity, K. Srinivasa Rao, K. Guha, S. Baishya. A new compact analytical model of nanoelectromechanical systems-based capacitive micromachined ultrasonic transducers for pulse echo imaging. Journal of Computational Electronics 17(3), 1334–1342 (2018)