Fretting Wear and Corrosion Behaviour of an Al–ZrO2/Ni Hybrid Composite Developed by Friction Stir Processing
Tóm tắt
In this paper, the fretting wear and fretting corrosion behaviour of the AA6063 alloys and hybrid AA6063 matrix composite (HAMCs) was studied. The optical microscope and secondary electron microscope were used to characterize the microstructural features of the HAMCs. The composites were subjected to a dry fretting wear test under three different applied loads (5 N, 10 N, and 15 N). In comparison with the base material, the HAMCs demonstrated a significant increase (3.7 times) in specific wear resistance. The dissipation energy was reduced in HAMCs (15.9 × 10−3 J) as compared to the base material (24.2 × 10−3 J). The coefficient of friction and open-circuit potential decreased in the fretting regime in fretting corrosion as compared to dry fretting wear. The HAMCs exhibited higher fretting corrosion resistance as compared to base materials. The predominant wear mechanism of the fretting corrosion was abrasion, cracks, delamination, and corrosion.
Tài liệu tham khảo
Aruri D, Adepu K, Adepu K, Bazavada K. J Mater Res Technol 2013;2:362. https://doi.org/10.1016/J.JMRT.2013.10.004.
Arun Prakash N, Gnanamoorthy R, Kamaraj M.. Wear 2012;294–295:427. https://doi.org/10.1016/j.wear.2012.07.026.
Panagopoulos CN, Georgiou EP, Gavras AG. Tribol Int 2009;42:886. https://doi.org/10.1016/J.TRIBOINT.2008.12.002.
Vieira AC, Rocha LA, Papageorgiou N, Mischler S. Corros Sci 2012;54:26. https://doi.org/10.1016/J.CORSCI.2011.08.041.
Ding H, Zhou G, Dai Z, Bu Y, Jiang T. Wear 2009;267:292. https://doi.org/10.1016/J.WEAR.2008.11.031.
Sivakumar B, Kumar S, Sankara Narayanan TSN. Wear 2011;270:317. https://doi.org/10.1016/J.WEAR.2010.09.008.
Devaraju A, Kumar A, Kumaraswamy A, Kotiveerachari B. Mater Des 2013;51:331. https://doi.org/10.1016/j.matdes.2013.04.029.
Mishra RS, Ma ZY, Charit I. Mater Sci Eng A 2003;341:307. https://doi.org/10.1016/S0921-5093(02)00199-5.
Yuvaraj N, Aravindan S, Vipin. J Mater Res Technol 2015;4:398. https://doi.org/10.1016/j.jmrt.2015.02.006.
Bouaeshi WB, Li DY. Tribol Int 2007;40:188. https://doi.org/10.1016/J.TRIBOINT.2005.09.030.
Rejil CM, Dinaharan I, Vijay SJ, Murugan N. Mater Sci Eng A 2012;552:336. https://doi.org/10.1016/j.msea.2012.05.049.
Yadav D, Bauri R. Mater Lett 2010;64:664. https://doi.org/10.1016/j.matlet.2009.12.030.
Selvakumar S, Dinaharan I, Palanivel R, Babu BG. Mater Sci Eng A 2017;685:317. https://doi.org/10.1016/j.msea.2017.01.022.
Roy D, Basu B, Basu Mallick A. Intermetallics 2005;13:733. https://doi.org/10.1016/J.INTERMET.2004.11.005.
Kumar D, Nadeem Akhtar S, Kumar Patel A, Ramkumar J, Balani K. Wear 2015;322–323:203. https://doi.org/10.1016/J.WEAR.2014.11.016.
Sikdar K, Shekhar S, Balani K. Wear 2014;318:177. https://doi.org/10.1016/J.WEAR.2014.06.012.
Alidokht SA, Abdollah-Zadeh A, Soleymani S, Saeid T, Assadi H. Mater Charact 2012;63:90. https://doi.org/10.1016/j.matchar.2011.11.007.
Wu PQ, Chen H, Van Stappen M, Stals L, Celis JP. Surf Coatings Technol 2000;127:114. https://doi.org/10.1016/S0257-8972(00)00564-8.
Rao KA, Sahu A, Palani IA, Jayaprakash M. Surfaces and Interfaces 2021:101557. https://doi.org/10.1016/J.SURFIN.2021.101557.
Chen J, Wang J, Yan F, Zhang Q, Li QA. Tribol Int 2015;81:1. https://doi.org/10.1016/J.TRIBOINT.2014.07.014.
Ma F, Li J, Zeng Z, Gao Y. Lubr Sci 2018;30:365. https://doi.org/10.1002/LS.1427.
Ralston KD, Birbilis N, Davies CHJ. Scr Mater 2010;63:1201. https://doi.org/10.1016/J.SCRIPTAMAT.2010.08.035.
Maji P, Nath RK, Paul P, Bhogendro Meitei RK, Ghosh SK. J Manuf Process 2021;69:1. https://doi.org/10.1016/J.JMAPRO.2021.07.032.
Zhang P, Zeng L, Mi X, Lu Y, Luo S, Zhai W. Wear 2021;474–475:203760. https://doi.org/10.1016/J.WEAR.2021.203760.
Jia J, Lu J, Zhou H, Chen J. Mater Sci Eng A 2004;381:80. https://doi.org/10.1016/J.MSEA.2004.03.059.