Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aricò, 2005, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 4, 366, 10.1038/nmat1368
Kang, 2009, Battery materials for ultrafast charging and discharging, Nature, 458, 190, 10.1038/nature07853
Lee, 2010, High-power lithium batteries from functionalized carbon-nanotube electrodes, Nat. Nanotechnol., 5, 531, 10.1038/nnano.2010.116
Shen, 2018, Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes, Energy Storage Mater., 12, 161, 10.1016/j.ensm.2017.12.002
Lee, 2015, High performance flexible supercapacitor electrodes composed of ultralarge graphene sheets and vanadium dioxide, Adv. Energy Mater., 5, 1401890, 10.1002/aenm.201401890
Dong, 2018, Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors, Energy Storage Mater., 13, 96, 10.1016/j.ensm.2018.01.003
Li, 2016, Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3, Nano Energy, 25, 211, 10.1016/j.nanoen.2016.04.051
Wei, 2018, An electrochemically-induced bilayered structure facilitates long-life zinc storage of vanadium dioxide, J. Mater. Chem. A, 6, 8006, 10.1039/C8TA02090F
Wan, 2018, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers, Nat. Commun., 9, 1656, 10.1038/s41467-018-04060-8
Lu, 2017, Encapsulation of zinc hexacyanoferrate nanocubes with manganese oxide nanosheets for high-performance rechargeable zinc ion batteries, J. Mater. Chem. A, 5, 23628, 10.1039/C7TA07834J
Zeng, 2017, Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery, Adv. Mater., 29, 1700274, 10.1002/adma.201700274
Han, 2017, Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery, Chem. Mater., 29, 4874, 10.1021/acs.chemmater.7b00852
Zhang, 2016, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery, J. Am. Chem. Soc., 138, 12894, 10.1021/jacs.6b05958
Pan, 2016, Reversible aqueous zinc/manganese oxide energy storage from conversion reactions, Nat. Energy, 1, 16039, 10.1038/nenergy.2016.39
Alfaruqi, 2015, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system, Chem. Mater., 27, 3609, 10.1021/cm504717p
Zhang, 2015, Morphology-dependent electrochemical performance of Zinc hexacyanoferrate cathode for zinc-ion battery, Sci. Rep., 5, 18263, 10.1038/srep18263
Zhang, 2015, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system, Adv. Energy Mater., 5, 1400930, 10.1002/aenm.201400930
Jia, 2015, Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries, Mater. Chem. Phys., 149, 601, 10.1016/j.matchemphys.2014.11.014
Trócoli, 2015, An aqueous zinc-Ion battery based on copper hexacyanoferrate, ChemSusChem, 8, 481, 10.1002/cssc.201403143
Xu, 2014, Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc Ions, Electrochim. Acta, 133, 254, 10.1016/j.electacta.2014.04.001
Lee, 2013, Todorokite-type MnO2 as a zinc-ion intercalating material, Electrochim. Acta, 112, 138, 10.1016/j.electacta.2013.08.136
Xu, 2012, Energetic zinc ion chemistry: the rechargeable zinc ion battery, Angew. Chem. Int. Ed., 51, 933, 10.1002/anie.201106307
Hu, 2018, Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery, Nano Lett., 18, 1758, 10.1021/acs.nanolett.7b04889
Xia, 2018, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode, Adv. Mater., 30, 1705580, 10.1002/adma.201705580
Cai, 2018, Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode, Energy Storage Mater., 13, 168, 10.1016/j.ensm.2018.01.009
He, 2018, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-Ion batteries, Adv. Energy Mater., 8, 1702463, 10.1002/aenm.201702463
Zhang, 2018, Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life, ACS Energy Lett., 1366, 10.1021/acsenergylett.8b00565
Yan, 2018, Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries, Adv. Mater., 30, 1703725, 10.1002/adma.201703725
Junwei, 2018, Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide, Adv. Mater., 30, 1800762, 10.1002/adma.201800762
Li, 2018, A long-life aqueous Zn-ion battery based on Na3V2 (PO4)2F3 cathode, Energy Storage Mater., 15, 14, 10.1016/j.ensm.2018.03.003
He, 2017, High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode, Small, 13, 1702551, 10.1002/smll.201702551
Alfaruqi, 2017, Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode, Chem. Mater., 29, 1684, 10.1021/acs.chemmater.6b05092
He, 2017, Layered VS2 nanosheet-based aqueous zn ion battery cathode, Adv. Energy Mater., 7, 1601920, 10.1002/aenm.201601920
Yan, 2017, Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries, Adv. Mater., 30, 1703725, 10.1002/adma.201703725
Hu, 2017, Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life, ACS Appl. Mater. Interfaces, 9, 42717, 10.1021/acsami.7b13110
Kundu, 2016, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode, Nat. Energy, 1, 16119, 10.1038/nenergy.2016.119
Rahman, 2010, Enhanced lithium storage in a VO2(B)-multiwall carbon nanotube microsheet composite prepared via an in situ hydrothermal process, Electrochim. Acta, 56, 693, 10.1016/j.electacta.2010.10.012
Baudrin, 2006, Preparation of nanotextured VO2[B] from vanadium oxide aerogels, Chem. Mater., 18, 4369, 10.1021/cm060659p
Rui, 2012, One-pot synthesis of carbon-coated VO2(B) nanobelts for high-rate lithium storage, RSC Adv., 2, 1174, 10.1039/C1RA00698C
Liu, 2017, Recent progress in the applications of vanadium-based oxides on energy storage: from low-dimensional nanomaterials synthesis to 3d micro/nano-structures and free-standing electrodes fabrication, Adv. Energy Mater., 7, 1700547, 10.1002/aenm.201700547
Yin, 2012, Assembly of graphene sheets into 3D macroscopic structures, Small, 8, 2458, 10.1002/smll.201102614
Liu, 2014, Nanostructured graphene composite papers for highly flexible and foldable supercapacitors, Adv. Mater., 26, 4855, 10.1002/adma.201401513
Liu, 2016, Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations, Chem. Soc. Rev., 45, 4340, 10.1039/C6CS00041J
Dikin, 2007, Preparation and characterization of graphene oxide paper, Nature, 448, 457, 10.1038/nature06016
Li, 2008, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 3, 101, 10.1038/nnano.2007.451
Kuang, 2015, Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors, Nanoscale, 7, 9252, 10.1039/C5NR00841G
Deville, 2008, Freeze-casting of porous ceramics: a review of current achievements and issues, Adv. Eng. Mater., 10, 155, 10.1002/adem.200700270
Liu, 2015, Polyaniline-graphene composites with a three-dimensional array-based nanostructure for high-performance supercapacitors, Carbon, 83, 79, 10.1016/j.carbon.2014.11.026
Wan, 2016, Alkali-metal-ion-functionalized graphene oxide as a superior anode material for sodium-ion batteries, Chem. Eur. J, 22, 8152, 10.1002/chem.201600660
Chao, 2015, Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries, Nano Lett., 15, 565, 10.1021/nl504038s
Kong, 2015, Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor, ACS Nano, 9, 11200, 10.1021/acsnano.5b04737
Mashtalir, 2015, Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices, Adv. Mater., 27, 3501, 10.1002/adma.201500604
Zhang, 2017, Liquid exfoliation of interlayer spacing-tunable 2D vanadium oxide nanosheets: high capacity and rate handling Li-ion battery cathodes, Nano Energy, 39, 151, 10.1016/j.nanoen.2017.06.044
Muller, 2015, High performance pseudocapacitor based on 2d layered metal chalcogenide nanocrystals, Nano. Lett., 15, 1911, 10.1021/nl504764m
Chao, 2016, Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance, Nat. Commun., 7, 12122, 10.1038/ncomms12122
Brezesinski, 2010, Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors, Nat. Mater., 9, 146, 10.1038/nmat2612
Ren, 2006, Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries, J. Power Sources, 162, 1357, 10.1016/j.jpowsour.2006.08.008
Aragón, 2017, Insight into the electrochemical sodium insertion of vanadium superstoichiometric NASICON phosphate, Inorg. Chem., 56, 11845, 10.1021/acs.inorgchem.7b01846
Xiang, 2017, Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: binder-free and high-performance Li-ion anode, ACS Nano, 11, 6483, 10.1021/acsnano.7b03329