Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance

Energy Storage Materials - Tập 17 - Trang 143-150 - 2019
Xi Dai1, Fang Wan1, Linlin Zhang1, Hongmei Cao1, Zhiqiang Niu1
1Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Liu, 2010, Advanced materials for energy storage, Adv. Mater., 22, E28, 10.1002/adma.200903328

Aricò, 2005, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 4, 366, 10.1038/nmat1368

Kang, 2009, Battery materials for ultrafast charging and discharging, Nature, 458, 190, 10.1038/nature07853

Lee, 2010, High-power lithium batteries from functionalized carbon-nanotube electrodes, Nat. Nanotechnol., 5, 531, 10.1038/nnano.2010.116

Shen, 2018, Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes, Energy Storage Mater., 12, 161, 10.1016/j.ensm.2017.12.002

Lee, 2015, High performance flexible supercapacitor electrodes composed of ultralarge graphene sheets and vanadium dioxide, Adv. Energy Mater., 5, 1401890, 10.1002/aenm.201401890

Kim, 2014, Aqueous rechargeable Li and Na ion batteries, Chem. Rev., 114, 11788, 10.1021/cr500232y

Dong, 2018, Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors, Energy Storage Mater., 13, 96, 10.1016/j.ensm.2018.01.003

Li, 2016, Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3, Nano Energy, 25, 211, 10.1016/j.nanoen.2016.04.051

Wei, 2018, An electrochemically-induced bilayered structure facilitates long-life zinc storage of vanadium dioxide, J. Mater. Chem. A, 6, 8006, 10.1039/C8TA02090F

Wan, 2018, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers, Nat. Commun., 9, 1656, 10.1038/s41467-018-04060-8

Lu, 2017, Encapsulation of zinc hexacyanoferrate nanocubes with manganese oxide nanosheets for high-performance rechargeable zinc ion batteries, J. Mater. Chem. A, 5, 23628, 10.1039/C7TA07834J

Zeng, 2017, Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery, Adv. Mater., 29, 1700274, 10.1002/adma.201700274

Han, 2017, Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery, Chem. Mater., 29, 4874, 10.1021/acs.chemmater.7b00852

Zhang, 2016, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery, J. Am. Chem. Soc., 138, 12894, 10.1021/jacs.6b05958

Pan, 2016, Reversible aqueous zinc/manganese oxide energy storage from conversion reactions, Nat. Energy, 1, 16039, 10.1038/nenergy.2016.39

Alfaruqi, 2015, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system, Chem. Mater., 27, 3609, 10.1021/cm504717p

Zhang, 2015, Morphology-dependent electrochemical performance of Zinc hexacyanoferrate cathode for zinc-ion battery, Sci. Rep., 5, 18263, 10.1038/srep18263

Zhang, 2015, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system, Adv. Energy Mater., 5, 1400930, 10.1002/aenm.201400930

Jia, 2015, Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries, Mater. Chem. Phys., 149, 601, 10.1016/j.matchemphys.2014.11.014

Trócoli, 2015, An aqueous zinc-Ion battery based on copper hexacyanoferrate, ChemSusChem, 8, 481, 10.1002/cssc.201403143

Xu, 2014, Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc Ions, Electrochim. Acta, 133, 254, 10.1016/j.electacta.2014.04.001

Lee, 2013, Todorokite-type MnO2 as a zinc-ion intercalating material, Electrochim. Acta, 112, 138, 10.1016/j.electacta.2013.08.136

Xu, 2012, Energetic zinc ion chemistry: the rechargeable zinc ion battery, Angew. Chem. Int. Ed., 51, 933, 10.1002/anie.201106307

Hu, 2018, Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery, Nano Lett., 18, 1758, 10.1021/acs.nanolett.7b04889

Xia, 2018, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode, Adv. Mater., 30, 1705580, 10.1002/adma.201705580

Cai, 2018, Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode, Energy Storage Mater., 13, 168, 10.1016/j.ensm.2018.01.009

He, 2018, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-Ion batteries, Adv. Energy Mater., 8, 1702463, 10.1002/aenm.201702463

Zhang, 2018, Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life, ACS Energy Lett., 1366, 10.1021/acsenergylett.8b00565

Yan, 2018, Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries, Adv. Mater., 30, 1703725, 10.1002/adma.201703725

Junwei, 2018, Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide, Adv. Mater., 30, 1800762, 10.1002/adma.201800762

Li, 2018, A long-life aqueous Zn-ion battery based on Na3V2 (PO4)2F3 cathode, Energy Storage Mater., 15, 14, 10.1016/j.ensm.2018.03.003

He, 2017, High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode, Small, 13, 1702551, 10.1002/smll.201702551

Alfaruqi, 2017, Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode, Chem. Mater., 29, 1684, 10.1021/acs.chemmater.6b05092

He, 2017, Layered VS2 nanosheet-based aqueous zn ion battery cathode, Adv. Energy Mater., 7, 1601920, 10.1002/aenm.201601920

Yan, 2017, Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries, Adv. Mater., 30, 1703725, 10.1002/adma.201703725

Hu, 2017, Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life, ACS Appl. Mater. Interfaces, 9, 42717, 10.1021/acsami.7b13110

Kundu, 2016, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode, Nat. Energy, 1, 16119, 10.1038/nenergy.2016.119

Rahman, 2010, Enhanced lithium storage in a VO2(B)-multiwall carbon nanotube microsheet composite prepared via an in situ hydrothermal process, Electrochim. Acta, 56, 693, 10.1016/j.electacta.2010.10.012

Baudrin, 2006, Preparation of nanotextured VO2[B] from vanadium oxide aerogels, Chem. Mater., 18, 4369, 10.1021/cm060659p

Rui, 2012, One-pot synthesis of carbon-coated VO2(B) nanobelts for high-rate lithium storage, RSC Adv., 2, 1174, 10.1039/C1RA00698C

Liu, 2017, Recent progress in the applications of vanadium-based oxides on energy storage: from low-dimensional nanomaterials synthesis to 3d micro/nano-structures and free-standing electrodes fabrication, Adv. Energy Mater., 7, 1700547, 10.1002/aenm.201700547

Yin, 2012, Assembly of graphene sheets into 3D macroscopic structures, Small, 8, 2458, 10.1002/smll.201102614

Liu, 2014, Nanostructured graphene composite papers for highly flexible and foldable supercapacitors, Adv. Mater., 26, 4855, 10.1002/adma.201401513

Liu, 2016, Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations, Chem. Soc. Rev., 45, 4340, 10.1039/C6CS00041J

Dikin, 2007, Preparation and characterization of graphene oxide paper, Nature, 448, 457, 10.1038/nature06016

Li, 2008, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 3, 101, 10.1038/nnano.2007.451

Bai, 2011, On the gelation of graphene oxide, J. Phys. Chem. C, 115, 5545, 10.1021/jp1120299

Kuang, 2015, Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors, Nanoscale, 7, 9252, 10.1039/C5NR00841G

Deville, 2008, Freeze-casting of porous ceramics: a review of current achievements and issues, Adv. Eng. Mater., 10, 155, 10.1002/adem.200700270

Liu, 2015, Polyaniline-graphene composites with a three-dimensional array-based nanostructure for high-performance supercapacitors, Carbon, 83, 79, 10.1016/j.carbon.2014.11.026

Wan, 2016, Alkali-metal-ion-functionalized graphene oxide as a superior anode material for sodium-ion batteries, Chem. Eur. J, 22, 8152, 10.1002/chem.201600660

Chao, 2015, Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries, Nano Lett., 15, 565, 10.1021/nl504038s

Kong, 2015, Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor, ACS Nano, 9, 11200, 10.1021/acsnano.5b04737

Mashtalir, 2015, Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices, Adv. Mater., 27, 3501, 10.1002/adma.201500604

Zhang, 2017, Liquid exfoliation of interlayer spacing-tunable 2D vanadium oxide nanosheets: high capacity and rate handling Li-ion battery cathodes, Nano Energy, 39, 151, 10.1016/j.nanoen.2017.06.044

Muller, 2015, High performance pseudocapacitor based on 2d layered metal chalcogenide nanocrystals, Nano. Lett., 15, 1911, 10.1021/nl504764m

Chao, 2016, Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance, Nat. Commun., 7, 12122, 10.1038/ncomms12122

Brezesinski, 2010, Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors, Nat. Mater., 9, 146, 10.1038/nmat2612

Ren, 2006, Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries, J. Power Sources, 162, 1357, 10.1016/j.jpowsour.2006.08.008

Aragón, 2017, Insight into the electrochemical sodium insertion of vanadium superstoichiometric NASICON phosphate, Inorg. Chem., 56, 11845, 10.1021/acs.inorgchem.7b01846

Xiang, 2017, Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: binder-free and high-performance Li-ion anode, ACS Nano, 11, 6483, 10.1021/acsnano.7b03329

Wang, 2017, Membrane-assisted assembly strategy of flexible electrodes for multifunctional supercapacitors, Carbon, 125, 419, 10.1016/j.carbon.2017.09.087