Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets

Materials and Design - Tập 116 - Trang 656-665 - 2017
S. Kitipornchai1, Da Chen1, Jie Yang2
1School of Civil Engineering, The University of Queensland, Brisbane, St Lucia 4072, Australia
2School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ashby, 2000

Lefebvre, 2008, Porous metals and metallic foams: current status and recent developments, Adv. Eng. Mater., 10, 775, 10.1002/adem.200800241

Betts, 2012, Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: a review, Mater. Sci. Technol., 28, 129, 10.1179/026708311X13135950699290

Dukhan, 2013

Smith, 2012, Steel foam for structures: a review of applications, manufacturing and material properties, J. Constr. Steel Res., 71, 1, 10.1016/j.jcsr.2011.10.028

Zhao, 2012, Review on thermal transport in high porosity cellular metal foams with open cells, Int. J. Heat Mass Transf., 55, 3618, 10.1016/j.ijheatmasstransfer.2012.03.017

Pollien, 2005, Graded open-cell aluminium foam core sandwich beams, Mater. Sci. Eng. A, 404, 9, 10.1016/j.msea.2005.05.096

Banhart, 2001, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., 46, 559, 10.1016/S0079-6425(00)00002-5

Hassani, 2012, Production of graded aluminum foams via powder space holder technique, Mater. Des., 40, 510, 10.1016/j.matdes.2012.04.024

He, 2014, Preparation of density-graded aluminum foam, Mater. Sci. Eng. A, 618, 496, 10.1016/j.msea.2014.08.087

Hangai, 2012, Fabrication of functionally graded aluminum foam using aluminum alloy die castings by friction stir processing, Mater. Sci. Eng. A, 534, 716, 10.1016/j.msea.2011.11.100

Hangai, 2013, Compression properties of Al/Al–Si–Cu alloy functionally graded aluminum foam fabricated by friction stir processing route, Mater. Trans., 54, 405, 10.2320/matertrans.M2012376

Grygorowicz, 2015, Elastic buckling of a sandwich beam with variable mechanical properties of the core, Thin-Walled Struct., 87, 127, 10.1016/j.tws.2014.11.014

Shafiei, 2016, On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams, Int. J. Eng. Sci., 106, 42, 10.1016/j.ijengsci.2016.05.007

Chen, 2015, Elastic buckling and static bending of shear deformable functionally graded porous beam, Compos. Struct., 133, 54, 10.1016/j.compstruct.2015.07.052

Chen, 2016, Free and forced vibrations of shear deformable functionally graded porous beams, Int. J. Mech. Sci., 108, 14, 10.1016/j.ijmecsci.2016.01.025

Chen, 2016, Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core, Thin-Walled Struct., 107, 39, 10.1016/j.tws.2016.05.025

Mojahedin, 2016, Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory, Thin-Walled Struct., 99, 83, 10.1016/j.tws.2015.11.008

Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0

Rafiee, 2009, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 3, 3884, 10.1021/nn9010472

Gong, 2012, Optimizing the reinforcement of polymer-based nanocomposites by graphene, ACS Nano, 6, 2086, 10.1021/nn203917d

Duarte, 2015, An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes, Carbon, 95, 589, 10.1016/j.carbon.2015.08.065

Groven, 2012, Solution combustion synthesis of carbon nanotube loaded nickel foams, Mater. Lett., 73, 126, 10.1016/j.matlet.2012.01.033

Duarte, 2016, Composite and nanocomposite metal foams, Materials, 9, 79, 10.3390/ma9020079

Zhang, 2015, Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes, Mater. Des., 88, 359, 10.1016/j.matdes.2015.09.017

Wu, 2016, Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections, Compos. Part B, 90, 86, 10.1016/j.compositesb.2015.12.007

Wattanasakulpong, 2013, Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation, Comput. Mater. Sci., 71, 201, 10.1016/j.commatsci.2013.01.028

Ansari, 2016, Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading, Compos. Part B, 95, 196, 10.1016/j.compositesb.2016.03.080

Zaman, 2012, From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites, Nanoscale, 4, 4578, 10.1039/c2nr30837a

Li, 2016, Effect of the orientation of graphene-based nanoplatelets upon the Young's modulus of nanocomposites, Compos. Sci. Technol., 123, 125, 10.1016/j.compscitech.2015.12.005

Tjong, 2013, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater. Sci. Eng. R. Rep., 74, 281, 10.1016/j.mser.2013.08.001

Rashad, 2015, Development of magnesium-graphene nanoplatelets composite, J. Compos. Mater., 49, 285, 10.1177/0021998313518360

Bakshi, 2010, Carbon nanotube reinforced metal matrix composites-a review, Int. Mater. Rev., 55, 41, 10.1179/095066009X12572530170543

Rashad, 2014, Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method, Prog. Nat. Sci.: Mater. Int., 24, 101, 10.1016/j.pnsc.2014.03.012

Bartolucci, 2011, Graphene–aluminum nanocomposites, Mater. Sci. Eng. A, 528, 7933, 10.1016/j.msea.2011.07.043

Zheng, 2014, Thermal conductivity and interface thermal conductance in composites of titanium with graphene platelets, J. Heat Transf., 136, 061301, 10.1115/1.4026488

Duarte, 2015, A novel approach to prepare aluminium-alloy foams reinforced by carbon-nanotubes, Mater. Lett., 160, 162, 10.1016/j.matlet.2015.07.115

Antenucci, 2015, Electro-deposition of graphene on aluminium open cell metal foams, Mater. Des., 71, 78, 10.1016/j.matdes.2015.01.004

Roberts, 2001, Elastic moduli of model random three-dimensional closed-cell cellular solids, Acta Mater., 49, 189, 10.1016/S1359-6454(00)00314-1

Roberts, 2002, Computation of the linear elastic properties of random porous materials with a wide variety of microstructure

Shokrieh, 2014, Stiffness prediction of graphene nanoplatelet/epoxy nanocomposites by a combined molecular dynamics–micromechanics method, Comput. Mater. Sci., 92, 444, 10.1016/j.commatsci.2014.06.002

Affdl, 1976, The Halpin-Tsai equations: a review, Polym. Eng. Sci., 16, 344, 10.1002/pen.760160512

De Villoria, 2007, Mechanical model to evaluate the effect of the dispersion in nanocomposites, Acta Mater., 55, 3025, 10.1016/j.actamat.2007.01.007

Ke, 2010, Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams, Compos. Struct., 92, 676, 10.1016/j.compstruct.2009.09.024

Jagannadham, 2012, Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 43, 316, 10.1007/s11663-011-9597-z

Liu, 2007, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B, 76, 064120, 10.1103/PhysRevB.76.064120

Yas, 2012, Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, Int. J. Press. Vessel. Pip., 98, 119, 10.1016/j.ijpvp.2012.07.012

Magnucki, 2004, Elastic buckling of a porous beam, J. Theor. Appl. Mech., 42, 859