Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplate-systems coupled by a visco- Pasternak medium via nonlocal elasticity theory
Tài liệu tham khảo
Abdollahi, 2015, Buckling analysis of thick functionally graded piezoelectric plates based on the higher-order shear and normal deformable theory, Acta Mech., 226, 2497, 10.1007/s00707-015-1330-6
Akgöz, 2013, Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory, Meccanica, 48, 863, 10.1007/s11012-012-9639-x
Ansari, 2016, Size-dependent buckling and postbuckling analyses of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory, Int. J. Struct. Stab. Dyn., 1750014
Ansari, 2016, Nonlocal free vibration in the pre- and post-buckled states of magneto-electro-thermo elastic rectangular nanoplates with various edge conditions, Smart Mater. Struct., 25, 95033, 10.1088/0964-1726/25/9/095033
Ansari, 2015, Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory, Compos. Struct., 126, 216, 10.1016/j.compstruct.2015.02.068
Asemi, 2014, Vibration characteristics of double-piezoelectric-nanoplate-systems, Micro Nano Lett., 9, 280, 10.1049/mnl.2013.0741
Asemi, 2014, Thermo-electro-mechanical vibration of coupled piezoelectric-nanoplate systems under non-uniform voltage distribution embedded in Pasternak elastic medium, Curr. Appl. Phys., 14, 814, 10.1016/j.cap.2014.03.012
Bhangale, 2006, Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method, J. Sound Vib., 294, 1016, 10.1016/j.jsv.2005.12.030
Chang, 2013, On the natural frequency of transversely isotropic magneto-electro-elastic plates in contact with fluid, Appl. Math. Model., 37, 2503, 10.1016/j.apm.2012.06.016
Civalek, 2016, A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method, Appl. Math. Comput., 289, 335
Demir, 2013, Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models, Appl. Math. Model., 37, 9355, 10.1016/j.apm.2013.04.050
Eringen, 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 4703, 10.1063/1.332803
Eringen, 1972, Linear theory of nonlocal elasticity and dispersion of plane waves, Int. J. Eng. Sci., 10, 425, 10.1016/0020-7225(72)90050-X
Farajpour, 2016, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Compos. Struct., 140, 323, 10.1016/j.compstruct.2015.12.039
Ghorbanpour Arani, 2016, Electro-magneto wave propagation analysis of viscoelastic sandwich nanoplates considering surface effects, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
Ghorbanpour Arani, 2015, Nonlinear vibration and instability of a visco-Pasternak coupled double-DWBNNTs-reinforced microplate system conveying microflow, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 229, 3274, 10.1177/0954406215569587
Hosseini, 2016, Thermomechanical vibration analysis of FGM viscoelastic multi-nanoplate system incorporating the surface effects via nonlocal elasticity theory, Microsyst. Technol., 1
Hosseini, 2015, Analytical solution for thermomechanical vibration of double-viscoelastic nanoplate-systems made of functionally graded materials, J. Therm. Stress., 38, 1428, 10.1080/01495739.2015.1073986
Hosseini, 2016, Surface effect on the biaxial buckling and free vibration of FGM nanoplate embedded in visco-Pasternak standard linear solid-type of foundation, Meccanica, 1
Jamalpoor, 2016, Free vibration and biaxial buckling analysis of magneto-electro-elastic microplate resting on visco-Pasternak substrate via modified strain gradient theory, Smart Mater. Struct., 25, 105035, 10.1088/0964-1726/25/10/105035
Jamalpoor, 2015, Biaxial buckling analysis of double-orthotropic microplate-systems including in-plane magnetic field based on strain gradient theory, Compos. Part B Eng., 75, 53, 10.1016/j.compositesb.2015.01.026
Karličić, 2015, Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems, Eur. J. Mech. A Solids, 49, 183, 10.1016/j.euromechsol.2014.07.005
Ke, 2015, Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions, Phys. E Low-dimens. Syst. Nanostruct., 66, 93, 10.1016/j.physe.2014.10.002
Ke, 2014, Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory, Acta Mech. Sin., 30, 516, 10.1007/s10409-014-0072-3
Kuang, 2014, An applied electro-magneto-elastic thin plate theory, Acta Mech., 225, 1153, 10.1007/s00707-013-1062-4
Kumaravel, 2007, Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment, Multidiscip. Model. Mater. Struct., 3, 461, 10.1163/157361107782106401
Li, 2014, Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory, Compos. Struct., 111, 522, 10.1016/j.compstruct.2014.01.033
Liu, 2015, Nonlinear vibration of nonlocal piezoelectric nanoplates, Int. J. Struct. Stab. Dyn., 15, 1540013, 10.1142/S0219455415400131
Milazzo, 2009, An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem, Smart Mater. Struct., 18, 85012, 10.1088/0964-1726/18/8/085012
Oniszczuk, 2000, Free transverse vibrations of elastically connected simply supported double-beam complex system, J. Sound Vib., 232, 387, 10.1006/jsvi.1999.2744
Pan, 2001, Exact solution for simply supported and multilayered magneto-electro-elastic plates, J. Appl. Mech., 68, 608, 10.1115/1.1380385
Pan, 2002, Free vibrations of simply supported and multilayered magneto-electro-elastic plates, J. Sound Vib., 252, 429, 10.1006/jsvi.2001.3693
Seelig, 1964, Normal mode vibrations of systems of elastically connected parallel bars, J. Acoust. Soc. Am., 36, 93, 10.1121/1.1918919
Seelig, 1964, Impact on an elastically connected double-beam system, J. Appl. Mech., 31, 621, 10.1115/1.3629723
Simões Moita, 2009, Analyses of magneto-electro-elastic plates using a higher order finite element model, Compos. Struct., 91, 421, 10.1016/j.compstruct.2009.04.007
Wang, 2000, Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator, Smart Mater. Struct., 9, 103, 10.1088/0964-1726/9/1/311
Wang, 2011, Axisymmetric bending of functionally graded circular magneto-electro-elastic plates, Eur. J. Mech. A Solids, 30, 999, 10.1016/j.euromechsol.2011.06.009
Wu, 2007, Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux, Int. J. Eng. Sci., 45, 744, 10.1016/j.ijengsci.2007.05.002
Zhang, 2013, Two-dimensional theory of piezoelectric plates considering surface effect, Eur. J. Mech. A Solids, 41, 50, 10.1016/j.euromechsol.2013.02.005
Zhang, 2014, Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates, Eur. J. Mech. A Solids, 46, 22, 10.1016/j.euromechsol.2014.01.005