Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplate-systems coupled by a visco- Pasternak medium via nonlocal elasticity theory

European Journal of Mechanics - A/Solids - Tập 63 - Trang 84-98 - 2017
A. Jamalpoor1, A. Ahmadi-Savadkoohi1, M. Hosseini2, Sh. Hosseini-Hashemi1,3
1School of Mechanical Engineering, Iran University of Science and Technology, Narmak 16842-13114, Tehran, Iran
2Department of Mechanical Engineering, Sirjan University of Technology, 78137-33385, Sirjan, I.R., Iran
3Center of Excellence in Railway Transportation, Iran University of Science and Technology, 16842-13114 Narmak, Tehran, Iran

Tài liệu tham khảo

Abdollahi, 2015, Buckling analysis of thick functionally graded piezoelectric plates based on the higher-order shear and normal deformable theory, Acta Mech., 226, 2497, 10.1007/s00707-015-1330-6 Akgöz, 2013, Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory, Meccanica, 48, 863, 10.1007/s11012-012-9639-x Ansari, 2016, Size-dependent buckling and postbuckling analyses of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory, Int. J. Struct. Stab. Dyn., 1750014 Ansari, 2016, Nonlocal free vibration in the pre- and post-buckled states of magneto-electro-thermo elastic rectangular nanoplates with various edge conditions, Smart Mater. Struct., 25, 95033, 10.1088/0964-1726/25/9/095033 Ansari, 2015, Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory, Compos. Struct., 126, 216, 10.1016/j.compstruct.2015.02.068 Asemi, 2014, Vibration characteristics of double-piezoelectric-nanoplate-systems, Micro Nano Lett., 9, 280, 10.1049/mnl.2013.0741 Asemi, 2014, Thermo-electro-mechanical vibration of coupled piezoelectric-nanoplate systems under non-uniform voltage distribution embedded in Pasternak elastic medium, Curr. Appl. Phys., 14, 814, 10.1016/j.cap.2014.03.012 Bhangale, 2006, Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method, J. Sound Vib., 294, 1016, 10.1016/j.jsv.2005.12.030 Chang, 2013, On the natural frequency of transversely isotropic magneto-electro-elastic plates in contact with fluid, Appl. Math. Model., 37, 2503, 10.1016/j.apm.2012.06.016 Civalek, 2016, A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method, Appl. Math. Comput., 289, 335 Demir, 2013, Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models, Appl. Math. Model., 37, 9355, 10.1016/j.apm.2013.04.050 Eringen, 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 4703, 10.1063/1.332803 Eringen, 1972, Linear theory of nonlocal elasticity and dispersion of plane waves, Int. J. Eng. Sci., 10, 425, 10.1016/0020-7225(72)90050-X Farajpour, 2016, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Compos. Struct., 140, 323, 10.1016/j.compstruct.2015.12.039 Ghorbanpour Arani, 2016, Electro-magneto wave propagation analysis of viscoelastic sandwich nanoplates considering surface effects, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. Ghorbanpour Arani, 2015, Nonlinear vibration and instability of a visco-Pasternak coupled double-DWBNNTs-reinforced microplate system conveying microflow, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 229, 3274, 10.1177/0954406215569587 Hosseini, 2016, Thermomechanical vibration analysis of FGM viscoelastic multi-nanoplate system incorporating the surface effects via nonlocal elasticity theory, Microsyst. Technol., 1 Hosseini, 2015, Analytical solution for thermomechanical vibration of double-viscoelastic nanoplate-systems made of functionally graded materials, J. Therm. Stress., 38, 1428, 10.1080/01495739.2015.1073986 Hosseini, 2016, Surface effect on the biaxial buckling and free vibration of FGM nanoplate embedded in visco-Pasternak standard linear solid-type of foundation, Meccanica, 1 Jamalpoor, 2016, Free vibration and biaxial buckling analysis of magneto-electro-elastic microplate resting on visco-Pasternak substrate via modified strain gradient theory, Smart Mater. Struct., 25, 105035, 10.1088/0964-1726/25/10/105035 Jamalpoor, 2015, Biaxial buckling analysis of double-orthotropic microplate-systems including in-plane magnetic field based on strain gradient theory, Compos. Part B Eng., 75, 53, 10.1016/j.compositesb.2015.01.026 Karličić, 2015, Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems, Eur. J. Mech. A Solids, 49, 183, 10.1016/j.euromechsol.2014.07.005 Ke, 2015, Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions, Phys. E Low-dimens. Syst. Nanostruct., 66, 93, 10.1016/j.physe.2014.10.002 Ke, 2014, Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory, Acta Mech. Sin., 30, 516, 10.1007/s10409-014-0072-3 Kuang, 2014, An applied electro-magneto-elastic thin plate theory, Acta Mech., 225, 1153, 10.1007/s00707-013-1062-4 Kumaravel, 2007, Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment, Multidiscip. Model. Mater. Struct., 3, 461, 10.1163/157361107782106401 Li, 2014, Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory, Compos. Struct., 111, 522, 10.1016/j.compstruct.2014.01.033 Liu, 2015, Nonlinear vibration of nonlocal piezoelectric nanoplates, Int. J. Struct. Stab. Dyn., 15, 1540013, 10.1142/S0219455415400131 Milazzo, 2009, An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem, Smart Mater. Struct., 18, 85012, 10.1088/0964-1726/18/8/085012 Oniszczuk, 2000, Free transverse vibrations of elastically connected simply supported double-beam complex system, J. Sound Vib., 232, 387, 10.1006/jsvi.1999.2744 Pan, 2001, Exact solution for simply supported and multilayered magneto-electro-elastic plates, J. Appl. Mech., 68, 608, 10.1115/1.1380385 Pan, 2002, Free vibrations of simply supported and multilayered magneto-electro-elastic plates, J. Sound Vib., 252, 429, 10.1006/jsvi.2001.3693 Seelig, 1964, Normal mode vibrations of systems of elastically connected parallel bars, J. Acoust. Soc. Am., 36, 93, 10.1121/1.1918919 Seelig, 1964, Impact on an elastically connected double-beam system, J. Appl. Mech., 31, 621, 10.1115/1.3629723 Simões Moita, 2009, Analyses of magneto-electro-elastic plates using a higher order finite element model, Compos. Struct., 91, 421, 10.1016/j.compstruct.2009.04.007 Wang, 2000, Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator, Smart Mater. Struct., 9, 103, 10.1088/0964-1726/9/1/311 Wang, 2011, Axisymmetric bending of functionally graded circular magneto-electro-elastic plates, Eur. J. Mech. A Solids, 30, 999, 10.1016/j.euromechsol.2011.06.009 Wu, 2007, Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux, Int. J. Eng. Sci., 45, 744, 10.1016/j.ijengsci.2007.05.002 Zhang, 2013, Two-dimensional theory of piezoelectric plates considering surface effect, Eur. J. Mech. A Solids, 41, 50, 10.1016/j.euromechsol.2013.02.005 Zhang, 2014, Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates, Eur. J. Mech. A Solids, 46, 22, 10.1016/j.euromechsol.2014.01.005