Free vibration analysis of isogeometric curvilinearly stiffened shells

Thin-Walled Structures - Tập 116 - Trang 124-135 - 2017
X.C. Qin1, C.Y. Dong1, F. Wang2, Y.P. Gong1
1School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
2School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Tài liệu tham khảo

W.H. Hoppmann, Orthogonally stiffened plates, 1953, TR-8B. Stanley, 1997, Free vibration characteristics of stiffened cylindrical shells, Comput. Struct., 65, 33, 10.1016/S0045-7949(96)00115-0 Nayak, 2002, On the free vibration of stiffened shallow shells, J. Sound Vib., 255, 357, 10.1006/jsvi.2001.4159 Samanta, 2004, Free vibration analysis of stiffened shells by the finite element technique, Eur. J. Mech.-A/Solids, 23, 159, 10.1016/j.euromechsol.2003.11.001 Pan, 2008, A study on free vibration of a ring-stiffened thin circular cylindrical shell with arbitrary boundary conditions, J. Sound Vib., 314, 330, 10.1016/j.jsv.2008.01.008 Efimtsov, 2009, Forced vibrations of plates and cylindrical shells with regular orthogonal system of stiffeners, J. Sound Vib., 327, 41, 10.1016/j.jsv.2009.05.021 Balamurugan, 2010, Finite element modeling of stiffened piezolaminated plates and shells with piezoelectric layers for active vibration control, Smart Mater. Struct., 19, 533, 10.1088/0964-1726/19/10/105003 P. Shi, R.K. Kapania, C.Y. Dong, Finite element approach to the static, vibration and buckling analysis of curvilinearly stiffened plates. in: Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA J., 2015. P. Shi, R.K. Kapania, C.Y. Dong, Free vibration of curvilinearly stiffened cylindrical shells. in: Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA J., 2015. Zhao, 2016, Buckling analysis of unitized curvilinearly stiffened composite panels, Compos. Struct., 135, 365, 10.1016/j.compstruct.2015.09.041 Li, 1987, Perturbation solution for the free vibration of Ring-stiffened cylindrical shells, Appl. Math. Mech., 3, 283 Cheng, 1990, Dynamic analysis of stiffened plates and shells using spline gauss collocation method, Comput. Struct., 36, 623, 10.1016/0045-7949(90)90077-F Mustafa, 1989, An energy method for free vibration analysis of stiffened circular cylindrical shells, Comput. Struct., 32, 355, 10.1016/0045-7949(89)90047-3 Shi, 2013, Free vibration of curvilinearly stiffened shallow shells, J. Vib. Acoust., 137, 1 Jafari, 2006, Free vibration of non-uniformly ring stiffened cylindrical shells using analytical, experimental and numerical methods, Thin-Walled Struct., 44, 82, 10.1016/j.tws.2005.08.008 Qu, 2013, A modified variational approach for vibration analysis of ring-stiffened conical–cylindrical shell combinations, Eur. J. Mech.-A/Solids, 37, 200, 10.1016/j.euromechsol.2012.06.006 Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194, 4135, 10.1016/j.cma.2004.10.008 Akkerman, 2008, The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. Mech., 41, 371, 10.1007/s00466-007-0193-7 Bazilevs, 2007, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Eng., 197, 173, 10.1016/j.cma.2007.07.016 Bazilevs, 2010, Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J. Comput. Phys., 229, 3402, 10.1016/j.jcp.2010.01.008 Bazilevs, 2006, Isogeometric fluid–structure interaction analysis with application to arterial blood flow, Comput. Mech., 38, 310, 10.1007/s00466-006-0084-3 Bazilevs, 2008, Isogeometric fluid–structure interaction: theory, algorithms and computations, Comput. Mech., 43, 3, 10.1007/s00466-008-0315-x Zhang, 2007, Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow, Comput. Methods Appl. Mech. Eng., 196, 2943, 10.1016/j.cma.2007.02.009 Auricchio, 2010, The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed fems versus NURBS-based approximations, Comput. Methods Appl. Mech. Eng., 199, 314, 10.1016/j.cma.2008.06.004 Auricchio, 2007, A fully ‘locking-free’ isogeometric approach for plane linear elasticity problems: a stream function formulation, Comput. Methods Appl. Mech. Eng., 197, 160, 10.1016/j.cma.2007.07.005 Elguedj, 2008, B- and F- projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. Methods Appl. Mech. Eng., 197, 2732, 10.1016/j.cma.2008.01.012 Cottrell, 2007, Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Eng., 196, 4160, 10.1016/j.cma.2007.04.007 Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Eng., 195, 5257, 10.1016/j.cma.2005.09.027 Bensen, 2009, Isogeometric shell analysis: the Reissner-Mindlin shell, Comput. Methods Appl. Mech. Eng., 199, 276, 10.1016/j.cma.2009.05.011 Gomez, 2008, Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Eng., 197, 4333, 10.1016/j.cma.2008.05.003 Chien, 2012, Static, free vibration, and buckling analysis of laminated composite Mindlin-Ressner plates using NURBS-based isogeometric approach, Int. J. Numer. Methods Eng., 91, 571, 10.1002/nme.4282 Kiendl, 2009, Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Eng., 198, 3902, 10.1016/j.cma.2009.08.013 Nguyen-Thanh, 2011, R. W¨uchner, K.U. Bletzinger, Y. YBazilevs, T. Rabczuk, Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Methods Appl. Mech. Eng., 200, 3410, 10.1016/j.cma.2011.08.014 Kiendl, 2010, The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches, Comput. Methods Appl. Mech. Eng., 199, 2403, 10.1016/j.cma.2010.03.029 Benson, 2011, A large deformation, rotation-free, isogeometric shell, Comput. Methods Appl. Mech. Eng., 200, 1367, 10.1016/j.cma.2010.12.003 Wall, 2008, Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Eng., 197, 2976, 10.1016/j.cma.2008.01.025 Nguyen, 2015, Isogeometric analysis:a review and computer implementation aspects, Math. Comput. Simul., 117, 89, 10.1016/j.matcom.2015.05.008 Lipschutz, 1969