Free vibration analysis of isogeometric curvilinearly stiffened shells
Tài liệu tham khảo
W.H. Hoppmann, Orthogonally stiffened plates, 1953, TR-8B.
Stanley, 1997, Free vibration characteristics of stiffened cylindrical shells, Comput. Struct., 65, 33, 10.1016/S0045-7949(96)00115-0
Nayak, 2002, On the free vibration of stiffened shallow shells, J. Sound Vib., 255, 357, 10.1006/jsvi.2001.4159
Samanta, 2004, Free vibration analysis of stiffened shells by the finite element technique, Eur. J. Mech.-A/Solids, 23, 159, 10.1016/j.euromechsol.2003.11.001
Pan, 2008, A study on free vibration of a ring-stiffened thin circular cylindrical shell with arbitrary boundary conditions, J. Sound Vib., 314, 330, 10.1016/j.jsv.2008.01.008
Efimtsov, 2009, Forced vibrations of plates and cylindrical shells with regular orthogonal system of stiffeners, J. Sound Vib., 327, 41, 10.1016/j.jsv.2009.05.021
Balamurugan, 2010, Finite element modeling of stiffened piezolaminated plates and shells with piezoelectric layers for active vibration control, Smart Mater. Struct., 19, 533, 10.1088/0964-1726/19/10/105003
P. Shi, R.K. Kapania, C.Y. Dong, Finite element approach to the static, vibration and buckling analysis of curvilinearly stiffened plates. in: Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA J., 2015.
P. Shi, R.K. Kapania, C.Y. Dong, Free vibration of curvilinearly stiffened cylindrical shells. in: Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA J., 2015.
Zhao, 2016, Buckling analysis of unitized curvilinearly stiffened composite panels, Compos. Struct., 135, 365, 10.1016/j.compstruct.2015.09.041
Li, 1987, Perturbation solution for the free vibration of Ring-stiffened cylindrical shells, Appl. Math. Mech., 3, 283
Cheng, 1990, Dynamic analysis of stiffened plates and shells using spline gauss collocation method, Comput. Struct., 36, 623, 10.1016/0045-7949(90)90077-F
Mustafa, 1989, An energy method for free vibration analysis of stiffened circular cylindrical shells, Comput. Struct., 32, 355, 10.1016/0045-7949(89)90047-3
Shi, 2013, Free vibration of curvilinearly stiffened shallow shells, J. Vib. Acoust., 137, 1
Jafari, 2006, Free vibration of non-uniformly ring stiffened cylindrical shells using analytical, experimental and numerical methods, Thin-Walled Struct., 44, 82, 10.1016/j.tws.2005.08.008
Qu, 2013, A modified variational approach for vibration analysis of ring-stiffened conical–cylindrical shell combinations, Eur. J. Mech.-A/Solids, 37, 200, 10.1016/j.euromechsol.2012.06.006
Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194, 4135, 10.1016/j.cma.2004.10.008
Akkerman, 2008, The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. Mech., 41, 371, 10.1007/s00466-007-0193-7
Bazilevs, 2007, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Eng., 197, 173, 10.1016/j.cma.2007.07.016
Bazilevs, 2010, Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J. Comput. Phys., 229, 3402, 10.1016/j.jcp.2010.01.008
Bazilevs, 2006, Isogeometric fluid–structure interaction analysis with application to arterial blood flow, Comput. Mech., 38, 310, 10.1007/s00466-006-0084-3
Bazilevs, 2008, Isogeometric fluid–structure interaction: theory, algorithms and computations, Comput. Mech., 43, 3, 10.1007/s00466-008-0315-x
Zhang, 2007, Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow, Comput. Methods Appl. Mech. Eng., 196, 2943, 10.1016/j.cma.2007.02.009
Auricchio, 2010, The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed fems versus NURBS-based approximations, Comput. Methods Appl. Mech. Eng., 199, 314, 10.1016/j.cma.2008.06.004
Auricchio, 2007, A fully ‘locking-free’ isogeometric approach for plane linear elasticity problems: a stream function formulation, Comput. Methods Appl. Mech. Eng., 197, 160, 10.1016/j.cma.2007.07.005
Elguedj, 2008, B- and F- projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. Methods Appl. Mech. Eng., 197, 2732, 10.1016/j.cma.2008.01.012
Cottrell, 2007, Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Eng., 196, 4160, 10.1016/j.cma.2007.04.007
Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Eng., 195, 5257, 10.1016/j.cma.2005.09.027
Bensen, 2009, Isogeometric shell analysis: the Reissner-Mindlin shell, Comput. Methods Appl. Mech. Eng., 199, 276, 10.1016/j.cma.2009.05.011
Gomez, 2008, Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Eng., 197, 4333, 10.1016/j.cma.2008.05.003
Chien, 2012, Static, free vibration, and buckling analysis of laminated composite Mindlin-Ressner plates using NURBS-based isogeometric approach, Int. J. Numer. Methods Eng., 91, 571, 10.1002/nme.4282
Kiendl, 2009, Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Eng., 198, 3902, 10.1016/j.cma.2009.08.013
Nguyen-Thanh, 2011, R. W¨uchner, K.U. Bletzinger, Y. YBazilevs, T. Rabczuk, Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Methods Appl. Mech. Eng., 200, 3410, 10.1016/j.cma.2011.08.014
Kiendl, 2010, The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches, Comput. Methods Appl. Mech. Eng., 199, 2403, 10.1016/j.cma.2010.03.029
Benson, 2011, A large deformation, rotation-free, isogeometric shell, Comput. Methods Appl. Mech. Eng., 200, 1367, 10.1016/j.cma.2010.12.003
Wall, 2008, Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Eng., 197, 2976, 10.1016/j.cma.2008.01.025
Nguyen, 2015, Isogeometric analysis:a review and computer implementation aspects, Math. Comput. Simul., 117, 89, 10.1016/j.matcom.2015.05.008
Lipschutz, 1969