Free radical biology and medicine: it's a gas, man!

William A. Pryor1, K. N. Houk, Christopher S. Foote, Jon M. Fukuto, Louis J. Ignarro, Giuseppe L. Squadrito, Kelvin J.A. Davies
1Biodynamics Institute, Louisiana State University, Baton Rouge, LA 70803, USA. [email protected]

Tóm tắt

We review gases that can affect oxidative stress and that themselves may be radicals. We discuss O2toxicity, invoking superoxide, hydrogen peroxide, and the hydroxyl radical. We also discuss superoxide dismutase (SOD) and both ground-state, triplet oxygen (3O2), and the more energetic, reactive singlet oxygen (1O2). Nitric oxide (·NO) is a free radical with cell signaling functions. Besides its role as a vasorelaxant,·NO and related species have other functions. Other endogenously produced gases include carbon monoxide (CO), carbon dioxide (CO2), and hydrogen sulfide (H2S). Like·NO, these species impact free radical biochemistry. The coordinated regulation of these species suggests that they all are used in cell signaling. Nitric oxide, nitrogen dioxide, and the carbonate radical (CO3·−) react selectively at moderate rates with nonradicals, but react fast with a second radical. These reactions establish “cross talk” between reactive oxygen (ROS) and reactive nitrogen species (RNS). Some of these species can react to produce nitrated proteins and nitrolipids. It has been suggested that ozone is formed in vivo. However, the biomarkers that were used to probe for ozone reactions may be formed by non-ozone-dependent reactions. We discuss this fascinating problem in the section on ozone. Very low levels of ROS or RNS may be mitogenic, but very high levels cause an oxidative stress that can result in growth arrest (transient or permanent), apoptosis, or necrosis. Between these extremes, many of the gasses discussed in this review will induce transient adaptive responses in gene expression that enable cells and tissues to survive. Such adaptive mechanisms are thought to be of evolutionary importance.

Từ khóa


Tài liệu tham khảo

2002 NDRL/NIST Solution Kinetics Database on the Web.NIST Standard Reference Database 40: A Compilation of Kinetics Data on Solution-Phase Reactions. http://kinetics.nist.gov/solution/index.php.

2005 NIST Chemistry WebBook.NIST Standard Reference Database Number 69, June 2005 Release. http://webbook.nist.gov/chemistry/.

10.1523/JNEUROSCI.16-03-01066.1996

10.1021/tx9700073

10.1080/10715760100300411

10.1016/0896-6273(95)90186-8

10.1016/S0891-5849(02)00786-4

10.1073/pnas.0402587101

Barnett DJ, McAninly J, and Williams DLH.Transnitrosation between nitrosothiols and thiols.J Chem Soc Perkin Trans II: 1131–1133, 1994.

Barnett DJ, Rios A, and Williams DLH.NO group transfer (transnitrosation) betweenS-nitrosothiols and thiols.J Chem Soc Perkin Trans II: 1279–1282, 1995.

Bartlett JD, Luethy JD, Carlson SG, Sollott SJ, and Holbrook NJ.Calcium ionophore A23187 induces expression of the growth arrest and DNA damage inducible CCAAT/enhancer-binding protein (C/EBP)-related gene, gadd153. Ca2+increases transcriptional activity and mRNA stability.J Biol Chem267: 20465–20470, 1992.

Beauchamp Cand Fridovich I.A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase.J Biol Chem245: 4641–4646, 1970.

10.1073/pnas.87.4.1620

10.1084/jem.192.7.1015

10.1016/S0140-6736(02)51392-1

10.1016/0891-5849(94)00198-S

10.3109/10715768909087918

10.1016/0003-9861(83)90145-5

10.1006/niox.2000.0299

Cadenas E.Mechanisms of oxygen activation and reactive oxygen species detoxification. In:Oxidative Stress and Antioxidant Defenses in Biology, edited by Ahmad S. New York: Chapman and Hall, 1965, p. 1–61.

10.1146/annurev.bi.58.070189.000455

10.1152/physrev.1979.59.3.527

10.1073/pnas.91.10.4130

Chisolm GM III.Antioxidants and atherosclerosis: a current assessment.Clin Cardiol14: I25–I30, 1991.

10.1016/S0092-8674(85)80056-8

10.1161/01.RES.86.12.1224

10.1152/ajpheart.2000.278.2.H643

10.1074/jbc.M105209200

Crawford D, Zbinden I, Amstad P, and Cerutti P.Oxidant stress induces the proto-oncogenes c-fos and c-myc in mouse epidermal cells.Oncogene3: 27–32, 1988.

10.1016/S0891-5849(98)00143-9

10.1016/S0039-6060(97)90115-X

10.1016/0076-6879(94)34087-0

10.1016/S0891-5849(96)00544-8

10.1006/abbi.1997.0109

10.1016/0891-5849(96)00160-8

10.1006/abbi.1996.0202

10.1006/abbi.1996.0032

10.1016/S0891-5849(96)00380-2

10.1002/anie.200500991

Cueto R, Squadrito GL, and Pryor WA.Identification of aldehydes in ventilated rat lungs, and in the lavage from the lungs of rats and human volunteers exposed to ozone.The Tenth Health Effects Institute Annual Conference, May 1–4, Conference Program Abstracts for Poster Sessions, 23, 1994.

10.1006/abbi.1995.1128

10.1042/bss0610001

10.1194/jlr.M200199-JLR200

DeForge LE, Preston AM, Takeuchi E, Kenney J, Boxer LA, and Remick DG.Regulation of interleukin 8 gene expression by oxidant stress.J Biol Chem268: 25568–25576, 1993.

10.1038/304466a0

10.1006/abbi.1996.0363

10.1021/bi973035t

10.1074/jbc.M102829200

10.1007/BF02535077

Farber JL.Mechanisms of cell injury by activated oxygen species.Environ Health Perspect102,Suppl10: 17–24, 1994.

Fee JA.Is superoxide toxic and are superoxide dismutases essential for aerobic life? In:Oxygen and Oxy-Radicals in Chemistry and Biology, edited by Rodgers MAJ and Powers EL. New York: Academic, 1981, p. 205–221; a discussion of this paper follows, on p. 221–239.

10.1016/0014-2999(87)90493-6

Fisher HF, Ofner P, Conn EE, Vennesland B, and Westheimer FH.Direct enzymic transfer of hydrogen atoms between substrates and DPN.Fed Proc11: 211, 1953.

10.1351/pac200476020335

10.1111/j.1749-6632.1992.tb38657.x

10.1128/MCB.9.10.4196

Frampton MW, Pryor WA, Cueto R, Cox C, Morrow PE, and Utell MJ.Aldehydes (nonanal and hexanal) in rat and human bronchoalveolar lavage fluid after ozone exposure.Res Rep Health Eff Inst90: 1–15, 1999.

10.1126/science.210504

10.1146/annurev.bi.64.070195.000525

Frimer AA.Singlet O2. Boca Raton, FL: CRC, 1985.

10.1038/87929

10.1021/ar960010y

Furchgott RF.Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid-activatable factor from bovine retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. In:Vasodilatation: Vascular Smooth Muscle, Peptides, Autonomic Nerves, and Endothelium, edited by Vanhoutte PM. New York: Raven, 1988, p. 401–414.

10.1007/BF02536725

Gascoyne PRC, Symons MCR, McLaughlin JA, and Szent-Györgyi A.Free radicals produced in the interaction of cysteine with carbonyls of biological relevance.Int J Quantum Chem Quantum Biol Symp9: 137–143, 1982.

10.1016/0006-291X(85)90971-4

10.1021/ja00257a025

10.1016/0891-5849(95)00034-U

10.1021/ja9733043

10.1021/tx000099n

10.1021/ic980051l

10.1074/jbc.275.5.3031

Goldstein S, Lind J, and Merenyi G.Reaction of organic peroxyl radicals with (NO2)-N-·and (NO)-N-·in aqueous solution: Intermediacy of organic peroxynitrate and peroxynitrite species.J Phys Chem A108: 1719–1725, 2004.

10.1016/0891-5849(93)90043-T

10.1074/jbc.272.5.2841

10.1080/10715760100300471

10.1073/pnas.87.16.6181

10.1096/fasebj.11.7.9212076

10.1074/jbc.271.8.4138

10.1021/ic50127a030

Halliwell Band Gutteridge JMC.Free Radicals in Biology and Medicine.New York: Oxford University Press, 1989, p. 1–543.

10.1080/10715769900301221

10.1006/bbrc.2000.3973

10.1093/geronj/11.3.298

10.1007/s00018-005-5085-4

10.1248/cpb.51.1046

10.1016/S0165-6147(97)90687-8

10.1146/annurev.pharmtox.39.1.191

Hobbs Aand Moncada S.Inducible nitric oxide synthase and inflammation. In:Inducible Enzymes in the Inflammatory Response, edited by Willoughby DA and Tomlinson A. Basel, Switzerland: Birkhauser Verlag, 1998, p. 315–336.

10.1021/ja991077u

Hoffmann R.The Story of O.Am Sci92: 23–26, 2003.

10.1016/0014-5793(93)81706-6

10.1006/bbrc.1997.6878

10.1016/0300-483X(94)90098-1

10.3109/10715769309145868

Ignarro LJ.Introduction and overview. In:Nitric Oxide in Biology and Pathobiology, edited by Ignarro LJ. San Diego: Academic, 2000, p. 3–19.

10.1073/pnas.84.24.9265

10.1146/annurev.micro.57.030502.090938

10.1016/0003-9861(87)90489-9

10.1152/ajplung.1997.273.4.L789

10.1006/taap.1998.8418

10.1164/ajrccm.160.6.9902025

10.1007/s00726-004-0072-x

10.1126/science.8235659

10.1021/tx049747j

10.2302/kjm.51.1

10.1016/0891-5849(96)00178-5

10.1089/104303402320138970

10.1126/science.308.5729.1730

Kery V, Bukovska G, and Kraus JP.Transsulfuration depends on heme in addition to pyridoxal 5′-phosphate. Cystathionine beta-synthase is a heme protein.J Biol Chem269: 25283–25288, 1994.

10.1074/jbc.M400334200

10.1038/359644a0

10.1073/pnas.86.1.99

10.1073/pnas.97.7.2984

10.1016/0891-5849(94)90039-6

10.1006/taap.1997.8270

10.1006/bbrc.1999.1915

10.1089/ars.2005.7.795

10.1096/fj.04-1815fje

10.1002/1521-3765(20010803)7:15<3313::AID-CHEM3313>3.0.CO;2-7

Kobayashi K, Miki M, and Tagawa S.Pulse-radiolysis study of the reaction of nitric-oxide with superoxide.J Chem Soc Dalton Trans2885–2889, 1995.

10.1179/135100001101536373

10.1179/135100002125000208

10.1016/0891-5849(94)90033-7

Krzywanski DM, Adgent MA, Squadrito GL, Lancaster JR, Forman HJ, and Postlethwait EM.Extracellular antioxidants and desferrioxamine influence·NO2-mediated protein modifications.Free Radic Biol Med37: S142, 2004.

Lacy F, Schmid-Schonbein GW, and Gough D.System and method for measuring hydrogen peroxide levels in a fluid and method for assessing oxidative stress [patent].PCT Int Appl(1999), 39 pp. [CODEN: PIXXD2 WO 9915891 A1 19990401 CAN 130:249107 AN 1999:231552 CAPLUS]

10.1016/0027-5107(88)90112-1

10.1006/abbi.1998.1059

10.1006/abbi.1999.1268

10.1073/pnas.95.5.2175

10.1164/ajrccm.158.3.9710031

10.1021/ja00139a027

10.1021/ic970946i

10.1021/bi960331h

10.1021/j100141a025

10.1073/pnas.190256897

McCord JMand Fridovich I.Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein).J Biol Chem244: 6049–6055, 1969.

10.1073/pnas.150238197

10.1101/SQB.1939.007.01.003

Moore JWand Pearson RG.Kinetics and Mechanism. New York: Wiley, 1981.

10.1016/j.tips.2003.10.007

Morris BJ.Stimulation of immediate early gene expression in striatal neurons by nitric oxide.J Biol Chem270: 24740–24744, 1995.

10.1165/ajrcmb.27.1.4862

10.1074/jbc.M302942200

10.1016/0009-2797(89)90109-9

10.1016/S0005-2728(00)00174-2

10.1016/j.tibs.2004.03.009

10.1111/j.1432-1033.1991.tb16261.x

10.1002/anie.200460457

10.1161/01.RES.88.1.12

10.1021/bi971891z

10.1021/ja029619m

10.1016/S1367-5931(99)00079-4

10.1038/74680

10.1152/ajplung.2000.279.6.L1029

10.1152/ajplung.1999.276.4.L688

10.1159/000213257

10.1038/327524a0

10.1016/0005-2744(73)90120-4

10.1089/152308602753666316

10.1038/3947

10.1038/38525

10.1016/0003-9861(85)90780-5

Pryor WA.Free Radicals. New York: McGraw-Hill, 1966, p. 1–355.

10.1021/cen-v046n021.p070

10.1038/scientificamerican0870-70

10.1021/cen-v049n038.p034

Pryor WA.Free radical reactions in biology: initiation of lipid autoxidation by ozone and nitrogen dioxide.Environ Health Perspect16: 180–181, 1976.

Pryor WA.The role of free radical reactions in biological systems. In:Free Radicals in Biology, edited by Pryor WA. New York: Academic, 1976, vol. I, p. 1–50.

10.1146/annurev.ph.48.030186.003301

10.1016/0891-5849(92)90060-T

10.1021/jo00340a038

10.1021/ja00335a038

10.1073/pnas.91.23.11173

10.1016/S0891-5849(97)00121-4

10.1016/0013-9351(81)90130-4

Pryor WA, Prier DG, Lightsey JW, and Church DF.Initiation of the autoxidation of polyunsaturated fatty acids (PUFA) by ozone and nitrogen dioxide. In:Autoxidation in Food and Biological Systems, edited by Simic MG and Karel M. New York: Plenum, 1980, p. 1–16.

10.1152/ajplung.1995.268.5.L699

10.1016/0891-5849(95)02033-7

10.1080/00039896.1976.10667220

10.1016/0006-291X(78)91562-0

10.1073/pnas.0307446101

10.1074/jbc.M504241200

10.1016/j.freeradbiomed.2004.10.008

10.1016/S0092-8674(00)80442-0

Rengasamy Aand Johns RA.Determination of Km for oxygen of nitric oxide synthase isoforms.J Pharmacol Exp Ther276: 30–33, 1996.

10.1021/ja980871x

Richter-Addo GBand Legzdins P.Metal Nitrosyls. New York: Oxford University Press, 1992, p. 1–369.

Roberts LJ, Fessel JP, and Davies SS.The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation.Brain Pathol15: 143–148, 2005.

10.1006/abbi.1995.9935

Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, and Freeman BA.Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives.J Biol Chem269: 26066–26075, 1994.

10.1165/rcmb.4816

10.1016/0167-4889(93)90006-B

10.1002/j.1460-2075.1991.tb07761.x

10.1006/abbi.1995.1228

10.1089/15230860260220094

Shibanuma M, Kuroki T, and Nose K.Induction of DNA replication and expression of proto-oncogene c-myc and c-fos in quiescent Balb/3T3 cells by xanthine/xanthine oxidase.Oncogene3: 27–32, 1988.

10.1073/pnas.050586597

Shull S, Heintz NH, Periasamy M, Manohar M, Janssen YM, Marsh JP, and Mossman BT.Differential regulation of antioxidant enzymes in response to oxidants.J Biol Chem266: 24398–24403, 1991.

Sies H.Introductory remarks. In:Oxidative Stress, edited by Sies H. London: Academic, 1985, p. 1–8.

10.1002/anie.200460118

10.1016/j.freeradbiomed.2004.04.024

10.1152/ajplung.00212.2002

10.1002/jcp.1041310308

10.1016/0003-9861(90)90489-L

10.1016/S0891-5849(98)00095-1

Squadrito GLand Pryor WA.Biological chemistry of peroxynitrate (O2NOOH/O2NOO−).Free Radic Biol Med33: S381–S381, 2002.

10.1021/tx020004c

10.1007/BF02535571

Stamler JS.S-nitrosothiols and the bioregulatory actions of nitrogen oxides through reactions with thiol groups.Curr Top Microbiol Immunol196: 19–36, 1995.

10.1042/bj2060267

10.1093/jn/122.suppl_3.627

10.1016/0014-5793(95)00178-C

10.1016/S0005-2728(99)00016-X

10.1038/43459

10.1016/S0891-5849(96)00275-4

Szent-Györgyi A.The living state and cancer. In:Submolecular Biology and Cancer, edited by Wolstenholme GEW, Fitzsimons DW, and Whelan J. Amsterdam, The Netherlands: Excerpta Medica, 1979, p. 3–18.

Szent-Györgyi A.Biological oxidation and cancer.Int J Quantum Chem Quantum Biol Symp9: 27–30, 1982.

10.1073/pnas.46.11.1444

10.1378/chest.96.3.606

10.1021/jo00373a007

10.1016/S0162-0134(01)00335-X

10.1016/0022-2836(89)90104-6

10.1021/ja00055a075

10.1021/bi00126a001

10.1006/abbi.1995.1290

10.1021/ja000270h

10.1006/abbi.1996.0131

10.1016/0968-0004(87)90014-4

10.3109/10715769109094124

10.1016/S0891-5849(02)01370-9

Vreman HJ, Wong RJ, and Stevenson DK.Sources, sinks, and measurements of carbon monoxide. In:Carbon Monoxide and Cardiovascular Functions, edited by Wong R. Boca Raton, FL: CRC, 2002, p. 273–307.

10.1021/tx00016a002

10.1021/ar50088a003

10.1016/S0027-5107(98)00066-9

10.1096/fj.02-0211hyp

10.1089/152308603768295249

10.1006/abbi.1996.0340

10.1021/ja00826a013

10.1126/science.1062722

10.1126/science.1077642

10.1126/science.1089525

10.1073/pnas.0437831100

Westheimer FH, Conn E, and Vennesland B.Enzymatic transfer of hydrogen from alcohol to DPN.J Am Chem Soc73: 2403, 1951.

10.1006/abbi.1995.1225

10.1073/pnas.90.21.9813

10.1021/bi973153g

10.1016/S0162-0134(00)00156-2

10.1042/bj2390225

10.1023/A:1022694131572

10.1016/j.freeradbiomed.2004.02.038

10.1093/emboj/20.21.6008

10.1021/jp048661w