Free fatty acid receptor 1: a ray of hope in the therapy of type 2 diabetes mellitus

Aashima Arora1, Tapan Behl1, Aayush Sehgal1, Sukhbir Singh1, Neelam Sharma1, Sridevi Chigurupati2, Rajwinder Kaur1, Saurabh Bhatia3,4, Ahmed Al‐Harrasi3, Celia Vargas‐De‐La‐Cruz5,6, Simona Bungău7
1Chitkara College of Pharmacy, Chitkara University, Punjab, India
2Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia
3Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
4School of Health Science, University of Petroleum and Energy Studies, Dehradun, India
5E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, Peru
6Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza e Investigacion en Bacteriologia Alimentaria, Universidad Nacional Mayor de San Marcos, Lima, Peru
7Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania

Tóm tắt

Từ khóa


Tài liệu tham khảo

Araki T, Hirayama M, Hiroi S, Kaku K (2012) GPR40-induced insulin secretion by the novel agonist TAK-875: first clinical findings in patients with type 2 diabetes. Diabetes Obes Metab 14(3):271–278

Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132(6):2131–2157

Bartoov-Shifman R, Ridner G, Bahar K, Rubins N, Walker MD (2007) Regulation of the gene encoding GPR40, a fatty acid receptor expressed selectively in pancreatic β cells. J Biol Chem 282(32):23561–23571

Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278(13):11303–11311

Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR, McCoy DC, Kenakin TP, Andrews JL, Ammala C, Fornwald JA (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 148(5):619–628

Brown AJ, Jupe S, Briscoe CP (2005) A family of fatty acid binding receptors. DNA Cell Biol 24(1):54–61

Burant CF, Viswanathan P, Marcinak J, Cao C, Vakilynejad M, Xie B, Leifke E (2012) TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 379(9824):1403–1411

Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, Le Coutre J, Ninomiya Y, Damak S (2010) Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci 30(25):8376–8382

Chapman ER, Blasi J, An S, Brose N, Johnston PA, Südhof TC, Jahn R (1996) Fatty acylation of synaptotagmin in PC12 cells and synaptosomes. Biochem Biophys Res Commun 225(1):326–332

Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294(5548):1866–1870

Chen Y, Song M, Riley JP, Hu CC, Peng X, Scheuner D, Bokvist K, Maiti P, Kahl SD, Montrose-Rafizadeh C, Hamdouchi C (2016) A selective GPR40 (FFAR1) agonist LY2881835 provides immediate and durable glucose control in rodent models of type 2 diabetes. Pharmacol Res Perspect 4(6):e00278

Chen Y, Ren Q, Zhou Z, Deng L, Hu L, Zhang L, Li Z (2020) HWL-088, a new potent free fatty acid receptor 1 (FFAR1) agonist, improves glucolipid metabolism and acts additively with metformin in ob/ob diabetic mice. Br J Pharmacol 177(10):2286–2302

Civelli O, Reinscheid RK, Zhang Y, Wang Z, Fredriksson R, Schiöth HB (2013) G protein–coupled receptor deorphanizations. Annu Rev Pharmacol Toxicol 6(53):127–146

Combettes-Souverain M, Issad T (1998) Molecular basis of insulin action. Diabetes Metab 24(6):477–489

Cornish J, MacGibbon A, Lin JM, Watson M, Callon KE, Tong PC, Dunford JE, van der Does Y, Williams GA, Grey AB, Naot D (2008) Modulation of osteoclastogenesis by fatty acids. Endocrinology 149(11):5688–5695

De Meyts P (2004) Insulin and its receptor: structure, function and evolution. BioEssays 26(12):1351–1362

Defossa E, Wagner M (2014) Recent developments in the discovery of FFA1 receptor agonists as novel oral treatment for type 2 diabetes mellitus. Bioorg Med Chem Lett 24(14):2991–3000

Del Guerra S, Bugliani M, D’Aleo V, Del Prato S, Boggi U, Mosca F, Filipponi F, Lupi R (2010) G-protein-coupled receptor 40 (GPR40) expression and its regulation in human pancreatic islets: the role of type 2 diabetes and fatty acids. Nutr Metab Cardiovasc Dis 20(1):22–25

Dixon G, Nolan J, McClenaghan N, Flatt PR, Newsholme P (2003) A comparative study of amino acid consumption by rat islet cells and the clonal beta-cell line BRIN-BD11-the functional significance of l-alanine. J Endocrinol 179(3):447

Draznin B (2006) Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85α: the two sides of a coin. Diabetes 55(8):2392–2397

Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, Ou JH, Masiarz F, Kan YW, Goldfine ID, Roth RA (1985) The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40(4):747–758

Edfalk S, Steneberg P, Edlund H (2008) Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57(9):2280–2287

Eleazu C, Charles A, Eleazu K, Achi N (2018) Free fatty acid receptor 1 as a novel therapeutic target for type 2 diabetes mellitus-current status. Chem Biol Interact 1(289):32–39

Ellsworth BA, Shi J, Jurica EA, Nielsen LL, Wu X, Hernandez AH, Wang Z, Gu Z, Williams KN, Chen B, Cherney EC (2014) Discovery of BMS-986118, a dual MOA GPR40 agonist that produces glucose-dependent insulin and GLP-1 secretion. In: Abstracts of papers of The American Chemical Society (vol 248). 1155 16th St, NW, Washington, DC, 20036 USA: Amer Chemical Soc

Ferdaoussi M, Bergeron V, Kebede M, Mancini A, Alquier T, Poitout V (2012) Free fatty acid receptor 1: a new drug target for type 2 diabetes? Can J Diabetes 36(5):275–280

Flodgren E, Olde B, Meidute-Abaraviciene S, Winzell MS, Ahrén B, Salehi A (2007) GPR40 is expressed in glucagon producing cells and affects glucagon secretion. Biochem Biophys Res Commun 354(1):240–245

Fontés G, Zarrouki B, Hagman DK, Latour MG, Semache M, Roskens V, Moore PC, Prentki M, Rhodes CJ, Jetton TL, Poitout V (2010) Glucolipotoxicity age-dependently impairs beta cell function in rats despite a marked increase in beta cell mass. Diabetologia 53(11):2369–2379

Fu Z, Gilbert ER, Liu D (2013) Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev 9(1):25–53

Fujiwara K, Maekawa F, Yada T (2005) Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet β-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release. Am J Physiol Endocrinol Metab 289(4):E670–E677

Furukawa H, Miyamoto Y, Hirata Y, Watanabe K, Hitomi Y, Yoshitomi Y, Aida J, Noguchi N, Takakura N, Takami K, Miwatashi S (2020) Design and identification of a GPR40 full agonist (SCO-267) possessing a 2-carbamoylphenyl piperidine moiety. J Med Chem 63(18):10352–10379

Gonzalo S, Linder ME (1998) SNAP-25 palmitoylation and plasma membrane targeting require a functional secretory pathway. Mol Biol Cell 9(3):585–597

Gorski JN, Pachanski MJ, Mane J, Plummer CW, Souza S, Thomas-Fowlkes BS, Ogawa AM, Weinglass AB, Di Salvo J, Cheewatrakoolpong B, Howard AD (2017) GPR40 reduces food intake and body weight through GLP-1. Am J Physiol Endocrinol Metab 313(1):E37-47

Governa P, Caroleo MC, Carullo G, Aiello F, Cione E, Manetti F (2021) FFAR1/GPR40: one target, different binding sites, many agonists, no drugs, but a continuous and unprofitable tug-of-war between ligand lipophilicity, activity, and toxicity. Bioorg Med Chem Lett 23:127969

Grundmann M, Bender E, Schamberger J, Eitner F (2021) Pharmacology of free fatty acid receptors and their allosteric modulators. Int J Mol Sci 22(4):1763

Guo DY, Li DW, Ning MM, Dang XY, Zhang LN, Zeng LM, Hu YH, Leng Y (2015) Yhhu4488, a novel GPR40 agonist, promotes GLP-1 secretion and exerts anti-diabetic effect in rodent models. Biochem Biophys Res Commun 466(4):740–747

Hagman DK, Hays LB, Parazzoli SD, Poitout V (2005) Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J Biol Chem 280(37):32413–32418

Hamdouchi C, Kahl SD, Patel Lewis A, Cardona GR, Zink RW, Chen K, Eessalu TE, Ficorilli JV, Marcelo MC, Otto KA, Wilbur KL (2016) The discovery, preclinical, and early clinical development of potent and selective GPR40 agonists for the treatment of type 2 diabetes mellitus (LY2881835, LY2922083, and LY2922470). J Med Chem 59:10891–10916

Hara T, Hirasawa A, Ichimura A, Kimura I, Tsujimoto G (2011) Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders. J Pharm Sci 100(9):3594–3601

Hara T, Kimura I, Inoue D, Ichimura A, Hirasawa A (2013) Free fatty acid receptors and their role in regulation of energy metabolism. Rev Physiol Biochem Pharmacol 164:77–116

Hardy S, St-Onge GG, Joly É, Langelier Y, Prentki M (2005) Oleate promotes the proliferation of breast cancer cells via the G protein-coupled receptor GPR40. J Biol Chem 280(14):13285–13291

Hauge M, Vestmar MA, Husted AS, Ekberg JP, Wright MJ, Di Salvo J, Weinglass AB, Engelstoft MS, Madsen AN, Lückmann M, Miller MW (2015) GPR40 (FFAR1)–combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Mol Metab 4(1):3–14

Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87(4):1409–1439

Horowitz JF, Klein S (2000) Whole body and abdominal lipolytic sensitivity to epinephrine is suppressed in upper body obese women. Am J Physiol Endocrinol Metab 278(6):E1144–E1152

Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867

Houze JB, Zhu L, Sun Y, Akerman M, Qiu W, Zhang AJ, Sharma R, Schmitt M, Wang Y, Liu J, Liu J (2012) AMG 837: a potent, orally bioavailable GPR40 agonist. Bioorg Med Chem Lett 22(2):1267–1270

Huang H, Meegalla SK, Lanter JC, Winters MP, Zhao S, Littrell J, Qi J, Rady B, Lee PS, Liu J, Martin T (2018) Discovery of a GPR40 superagonist: the impact of aryl propionic acid α-fluorination. ACS Med Chem Lett 10(1):16–21

Iizuka K, Nakajima H, Namba M, Miyagawa JI, Miyazaki J, Hanafusa T, Matsuzawa Y (2002) Metabolic consequence of long-term exposure of pancreatic β cells to free fatty acid with special reference to glucose insensitivity. Biochimica Et Biophysica Acta (BBA) Mol Basis Dis 1586(1):23–31

Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H (2003) Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 422(6928):173–176

Jurica EA, Wu X, Williams KN, Hernandez AS, Nirschl DS, Rampulla RA, Mathur A, Zhou M, Cao G, Xie C, Jacob B (2017) Discovery of pyrrolidine-containing GPR40 agonists: stereochemistry effects a change in binding mode. J Med Chem 60(4):1417–1431

Kaku K, Enya K, Nakaya R, Ohira T, Matsuno R (2015) Efficacy and safety of fasiglifam (TAK-875), a G protein-coupled receptor 40 agonist, in J apanese patients with type 2 diabetes inadequately controlled by diet and exercise: a randomized, double-blind, placebo-controlled, phase III trial. Diabetes Obes Metab 17(7):675–681

Kebede M, Alquier T, Latour MG, Semache M, Tremblay C, Poitout V (2008) The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes 57(9):2432–2437

Kebede M, Ferdaoussi M, Mancini A, Alquier T, Kulkarni RN, Walker MD, Poitout V (2012) Glucose activates free fatty acid receptor 1 gene transcription via phosphatidylinositol-3-kinase-dependent O-GlcNAcylation of pancreas-duodenum homeobox-1. Proc Natl Acad Sci 109(7):2376–2381

Lagerström MC, Schiöth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7(4):339–357

Lan H, Hoos LM, Liu L, Tetzloff G, Hu W, Abbondanzo SJ, Vassileva G, Gustafson EL, Hedrick JA, Davis HR (2008) Lack of FFAR1/GPR40 does not protect mice from high-fat diet–induced metabolic disease. Diabetes 57(11):2999–3006

Latour MG, Alquier T, Oseid E, Tremblay C, Jetton TL, Luo J, Lin DC, Poitout V (2007) GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes 56(4):1087–1094

Lee RK, Vangaveti V, Jarrod G, Shashidhar V, Shashidhar V, Baune BT (2010) Free fatty acid receptors: emerging targets for treatment of diabetes and its complications. Ther Adv Endocrinol Metab 1(4):165–175

Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

Li Z, Liu C, Xu X, Qiu Q, Su X, Dai Y, Yang J, Li H, Shi W, Liao C, Pan M (2017) Discovery of phenylsulfonyl acetic acid derivatives with improved efficacy and safety as potent free fatty acid receptor 1 agonists for the treatment of type 2 diabetes. Eur J Med Chem 29(138):458–479

Li Z, Xu X, Huang W, Qian H (2018) Free fatty acid receptor 1 (FFAR1) as an emerging therapeutic target for type 2 diabetes mellitus: recent progress and prevailing challenges. Med Res Rev 38(2):381–425

Li Z, Liu C, Yang J, Zhou J, Ye Z, Feng D, Yue N, Tong J, Huang W, Qian H (2019) Design, synthesis and biological evaluation of novel FFA1/GPR40 agonists: new breakthrough in an old scaffold. Eur J Med Chem 1(179):608–622

Li Z, Zhou Z, Zhang L (2020) Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016–2019): a patent review. Expert Opin Ther Pat 30(1):27–38

Lin DC, Guo Q, Luo J, Zhang J, Nguyen K, Chen M, Tran T, Dransfield PJ, Brown SP, Houze J, Vimolratana M (2012) Identification and pharmacological characterization of multiple allosteric binding sites on the free fatty acid 1 receptor. Mol Pharmacol 82(5):843–859

Lionetti L, Mollica MP, Lombardi A, Cavaliere G, Gifuni G, Barletta A (2009) From chronic overnutrition to insulin resistance: the role of fat-storing capacity and inflammation. Nutr Metab Cardiovasc Dis 19(2):146–152

Liou AP, Lu X, Sei Y, Zhao X, Pechhold S, Carrero RJ, Raybould HE, Wank S (2011) The G-protein—coupled receptor GPR40 directly mediates long-chain fatty acid—induced secretion of cholecystokinin. Gastroenterology 140(3):903–912

Ma D, Tao B, Warashina S, Kotani S, Lu L, Kaplamadzhiev DB, Mori Y, Tonchev AB, Yamashima T (2007) Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci Res 58(4):394–401

MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB (2002) The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 51(suppl 3):S434–S442

Mancini AD, Poitout V (2013) The fatty acid receptor FFA1/GPR40 a decade later: how much do we know? Trends Endocrinol Metab 24(8):398–407

Mancini AD, Poitout V (2015) GPR40 agonists for the treatment of type 2 diabetes: life after ‘TAKing’a hit. Diabetes Obes Metab 17(7):622–629

Mancini AD, Bertrand G, Vivot K, Carpentier É, Tremblay C, Ghislain J, Bouvier M, Poitout V (2015) β-Arrestin recruitment and biased agonism at free fatty acid receptor 1. J Biol Chem 290(34):21131–21140

McGarry JD (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51(1):7–18

Menon V, Lincoff AM, Nicholls SJ, Jasper S, Wolski K, McGuire DK, Mehta CR, Rosenstock J, Lopez C, Marcinak J, Cao C (2018) Fasiglifam-induced liver injury in patients with type 2 diabetes: results of a randomized controlled cardiovascular outcomes safety trial. Diabetes Care 41(12):2603–2609

Mingrone G (2006) Dietary fatty acids and insulin secretion. Scand J Food Nutr 50(sup2):79–84

Nagasumi K, Esaki R, Iwachidow K, Yasuhara Y, Ogi K, Tanaka H, Nakata M, Yano T, Shimakawa K, Taketomi S, Takeuchi K (2009) Overexpression of GPR40 in pancreatic β-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes 58(5):1067–1076

Nakamoto K, Nishinaka T, Matsumoto K, Kasuya F, Mankura M, Koyama Y, Tokuyama S (2012) Involvement of the long-chain fatty acid receptor GPR40 as a novel pain regulatory system. Brain Res 13(1432):74–83

news/2013/20131227_6117.html. Accessed 26 May 2016

Nolan CJ, Leahy JL, Delghingaro-Augusto V, Moibi J, Soni K, Peyot ML, Fortier M, Guay C, Lamontagne J, Barbeau A, Przybytkowski E (2006) Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling. Diabetologia 49(9):2120–2130

Oh YS, Bae GD, Baek DJ, Park EY, Jun HS (2018) Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front Endocrinol 16(9):384

Peng XV, Marcinak JF, Raanan MG, Cao C (2017) Combining the G-protein-coupled receptor 40 agonist fasiglifam with sitagliptin improves glycaemic control in patients with type 2 diabetes with or without metformin: a randomized, 12-week trial. Diabetes Obes Metab 19(8):1127–1134

Perrini S, Ficarella R, Picardi E, Cignarelli A, Barbaro M, Nigro P, Peschechera A, Palumbo O, Carella M, De Fazio M, Natalicchio A (2013) Differences in gene expression and cytokine release profiles highlight the heterogeneity of distinct subsets of adipose tissue-derived stem cells in the subcutaneous and visceral adipose tissue in humans. PLoS ONE 8(3):e57892

Prentki M (1996) New insights into pancreatic β-cell metabolic signaling in insulin secretion. Eur J Endocrinol 134(3):272–286

Prentki M, Joly E, El-Assaad W, Roduit R (2002) Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in β-cell adaptation and failure in the etiology of diabetes. Diabetes 51(suppl 3):S405–S413

Rhee JS, Betz A, Pyott S, Reim K, Varoqueaux F, Augustin I, Hesse D, Sudhof TC, Takahashi M, Rosenmund C, Brose N (2002) Beta phorbol ester-and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108:121–133

Rives ML, Rady B, Swanson N, Zhao S, Qi J, Arnoult E, Bakaj I, Mancini A, Breton B, Lee SP, Player MR (2018) GPR40-mediated Gα12 activation by allosteric full agonists highly efficacious at potentiating glucose-stimulated insulin secretion in human islets. Mol Pharmacol 93(6):581–591

Rodrigues DA, Pinheiro PD, Ferreira TT, Thota S, Fraga CA (2018) Structural basis for the agonist action at free fatty acid receptor 1 (FFA1R or GPR40). Chem Biol Drug Des 91(3):668–680

Safavi M, Foroumadi A, Abdollahi M (2013) The importance of synthetic drugs for type 2 diabetes drug discovery. Expert Opin Drug Discov 8(11):1339–1363

Sargsyan E, Ortsäter H, Thorn K, Bergsten P (2008) Diazoxide-induced β-cell rest reduces endoplasmic reticulum stress in lipotoxic β-cells. J Endocrinol 199(1):41–50

Schmitz O, Rungby J, Edge L, Juhl CB (2008) On high-frequency insulin oscillations. Ageing Res Rev 7(4):301–305

Sears B, Perry M (2015) The role of fatty acids in insulin resistance. Lipids Health Dis 14(1):1–9

Seino S, Seino M, Nishi S, Bell GI (1989) Structure of the human insulin receptor gene and characterization of its promoter. Proc Natl Acad Sci 86(1):114–118

Sener A, Malaisse WJ (1980) l-Leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288(5787):187–189

Shapiro H, Shachar S, Sekler I, Hershfinkel M, Walker MD (2005) Role of GPR40 in fatty acid action on the β cell line INS-1E. Biochem Biophys Res Commun 335(1):97–104

Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H (2005) The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab 1(4):245–258

Stoddart LA, Smith NJ, Milligan G, International Union of Pharmacology (2008) LXXI. Free fatty acid receptors FFA1,-2, and-3: pharmacology and pathophysiological functions. Pharmacol Rev 60(4):405–417

Suckale J, Solimena M (2007) Pancreas islets in metabolic signaling-focus on the β-cell. Nat Preced 13:7156–7171

Surgand JS, Rodrigo J, Kellenberger E, Rognan D (2006) A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins Struct Funct Bioinform 62(2):509–538

Takano R, Yoshida M, Inoue M, Honda T, Nakashima R, Matsumoto K, Yano T, Ogata T, Watanabe N, Hirouchi M, Kimura T (2015) Optimization of 3-aryl-3-ethoxypropanoic acids and discovery of the potent GPR40 agonist DS-1558. Bioorg Med Chem 23(17):5546–5565

Takeda Pharmaceutical Company Limited (2013) Osaka. https://www.takeda.com/

Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698

Tanaka H, Yoshida S, Minoura H, Negoro K, Shimaya A, Shimokawa T, Shibasaki M (2014) Novel GPR40 agonist AS2575959 exhibits glucose metabolism improvement and synergistic effect with sitagliptin on insulin and incretin secretion. Life Sci 94(2):115–121

Tang C, Ahmed K, Gille A, Lu S, Gröne HJ, Tunaru S, Offermanns S (2015) Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 21(2):173–177

Tang-Christensen M, Larsen PJ, Thulesen J, Nielsen JR, Vrang N (2001) Glucagon-like peptide 2, a neurotransmitter with a newly discovered role in the regulation of food ingestion. Ugeskr Laeger 163(3):287–291

Tikhonova IG, Sum CS, Neumann S, Thomas CJ, Raaka BM, Costanzi S, Gershengorn MC (2007) Bidirectional, iterative approach to the structural delineation of the functional “chemoprint” in GPR40 for agonist recognition. J Med Chem 50(13):2981–2989

Ueno H, Ito R, Abe SI, Ookawara M, Miyashita H, Ogino H, Miyamoto Y, Yoshihara T, Kobayashi A, Tsujihata Y, Takeuchi K (2019) SCO-267, a GPR40 full agonist, improves glycemic and body weight control in rat models of diabetes and obesity. J Pharmacol Exp Ther 370(2):172–181

Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Coussens LL, Liao YC, Tsubokawa M, Mason A (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313(6005):756–761

Wang L, Zhao Y, Gui B, Fu R, Ma F, Yu J, Qu P, Dong L, Chen C (2011) Acute stimulation of glucagon secretion by linoleic acid results from GPR40 activation and [Ca2+] i increase in pancreatic islet a-cells. J Endocrinol 210:173–179

Waring MJ (2010) Lipophilicity in drug discovery. Expert Opin Drug Discov 5(3):235–248

Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, Sowers MR (2008) The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med 168(15):1617–1624

Xiong Y, Swaminath G, Cao Q, Yang L, Guo Q, Salomonis H, Lu J, Houze JB, Dransfield PJ, Wang Y, Liu JJ (2013) Activation of FFA1 mediates GLP-1 secretion in mice. Evidence for allosterism at FFA1. Mol Cell Endocrinol 369(1–2):119–129

Yabuki C, Komatsu H, Tsujihata Y, Maeda R, Ito R, Matsuda-Nagasumi K, Sakuma K, Miyawaki K, Kikuchi N, Takeuchi K, Habata Y (2013) A novel antidiabetic drug, fasiglifam/TAK-875, acts as an ago-allosteric modulator of FFAR1. PLoS ONE 8(10):e76280

Yashiro H, Tsujihata Y, Takeuchi K, Hazama M, Johnson PR, Rorsman P (2012) The effects of TAK-875, a selective G protein-coupled receptor 40/free fatty acid 1 agonist, on insulin and glucagon secretion in isolated rat and human islets. J Pharmacol Exp Ther 340(2):483–489

Zhou YP, Grill VE (1994) Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Investig 93(2):870–876