Free-breathing cardiovascular cine magnetic resonance imaging using compressed-sensing and retrospective motion correction: accurate assessment of biventricular volume at 3T

Springer Science and Business Media LLC - Tập 41 - Trang 142-152 - 2022
Masahiro Takakado1, Tomoyuki Kido1, Ryo Ogawa1, Yoshihiro Takimoto2, Tsuyoshi Tokuda1, Yuki Tanabe1, Naoto Kawaguchi1, Jianing Pang3, Yoshiaki Komori4, Teruhito Kido1
1Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan
2Ehime University Hospital, Toon, Japan
3Siemens Medical Solutions USA, Inc, Chicago, USA
4Siemens Healthcare K.K., Tokyo, Japan

Tóm tắt

We applied a combination of compressed-sensing (CS) and retrospective motion correction to free-breathing cine magnetic resonance (MR) (FBCS cine MoCo). We validated FBCS cine MoCo by comparing it with breath-hold (BH) conventional cine MR. Thirty-five volunteers underwent both FBCS cine MoCo and BH conventional cine MR imaging. Twelve consecutive short-axis cine images were obtained. We compared the examination time, image quality and biventricular volumetric assessments between the two cine MR. FBCS cine MoCo required a significantly shorter examination time than BH conventional cine (135 s [110–143 s] vs. 198 s [186–349 s], p < 0.001). The image quality scores were not significantly different between the two techniques (End-diastole: FBCS cine MoCo; 4.7 ± 0.5 vs. BH conventional cine; 4.6 ± 0.6; p = 0.77, End-systole: FBCS cine MoCo; 4.5 ± 0.5 vs. BH conventional cine; 4.5 ± 0.6; p = 0.52). No significant differences were observed in all biventricular volumetric assessments between the two techniques. The mean differences with 95% confidence interval (CI), based on Bland–Altman analysis, were − 0.3 mL (− 8.2 − 7.5 mL) for LVEDV, 0.2 mL (− 5.6 − 5.9 mL) for LVESV, − 0.5 mL (− 6.3 − 5.2 mL) for LVSV, − 0.3% (− 3.5 − 3.0%) for LVEF, − 0.1 g (− 8.5 − 8.3 g) for LVED mass, 1.4 mL (− 15.5 − 18.3 mL) for RVEDV, 2.1 mL (− 11.2 − 15.3 mL) for RVESV, − 0.6 mL (− 9.7 − 8.4 mL) for RVSV, − 1.0% (− 6.5 − 4.6%) for RVEF. FBCS cine MoCo can potentially replace multiple BH conventional cine MR and improve the clinical utility of cine MR.

Tài liệu tham khảo

Pontone G, Guaricci AI, Andreini D, Ferro G, Guglielmo M, Baggiano A, et al. Prognostic stratification of patients with ST-segment-elevation myocardial infarction (PROSPECT): a cardiac magnetic resonance study. Circ Cardiovasc Imaging. 2017. https://doi.org/10.1161/CIRCIMAGING.117.006428. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 1987;76:44–51. https://doi.org/10.1161/01.cir.76.1.44. Curtis JP, Sokol SI, Wang Y, Rathore SS, Ko DT, Jadbabaie F, et al. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol. 2003;42:736–42. https://doi.org/10.1016/s0735-1097(03)00789-7. Grothues F, Smith GC, Moon JCC, Bellenger NG, Collins P, Klein HU, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90:29–34. https://doi.org/10.1016/S0002-9149(02)02381-0. Moon JC, Lorenz CH, Francis JM, Smith GC, Pennell DJ. Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology. 2002;223:789–97. https://doi.org/10.1148/radiol.2233011181. Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol. 2003;13:2409–18. https://doi.org/10.1007/s00330-003-1957-x. Kozerke S, Plein S. Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods. J Cardiovasc Magn Reson. 2008;10:29. https://doi.org/10.1186/1532-429X-10-29. Eberle HC, Nassenstein K, Jensen CJ, Schlosser T, Sabin GV, Naber CK, et al. Rapid MR assessment of left ventricular systolic function after acute myocardial infarction using single breath-hold cine imaging with the temporal parallel acquisition technique (TPAT) and 4D guide-point modelling analysis of left ventricular function. Eur Radiol. 2010;20:73–80. https://doi.org/10.1007/s00330-009-1522-3. Xu J, Kim D, Otazo R, Srichai MB, Lim RP, Axel L, et al. Towards a five-minute comprehensive cardiac MR examination using highly accelerated parallel imaging with a 32-element coil array: feasibility and initial comparative evaluation. J Magn Reson Imaging. 2013;38:180–8. https://doi.org/10.1002/jmri.23955. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–95. https://doi.org/10.1002/mrm.21391. Ogawa R, Kido T, Nakamura M, Tanabe Y, Kurata A, Schmidt M, et al. Comparison of compressed sensing and conventional coronary magnetic resonance angiography for detection of coronary artery stenosis. Eur J Radiol. 2020;129: 109124. https://doi.org/10.1016/j.ejrad.2020.109124. Hirai K, Kido T, Kido T, Ogawa R, Tanabe Y, Nakamura M, et al. Feasibility of contrast-enhanced coronary artery magnetic resonance angiography using compressed sensing. J Cardiovasc Magn Reson. 2020;22:15. https://doi.org/10.1186/s12968-020-0601-0. Kido T, Kido T, Nakamura M, Watanabe K, Schmidt M, Forman C, et al. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold. J Cardiovasc Magn Reson. 2016;18:50. https://doi.org/10.1186/s12968-016-0271-0. Kido T, Kido T, Nakamura M, Watanabe K, Schmidt M, Forman C, et al. Assessment of left ventricular function and mass on free-breathing compressed sensing real-time cine imaging. Circ J. 2017;81:1463–8. https://doi.org/10.1253/circj.CJ-17-0123. Plein S, Bulugahapitiya S, Jones TR, Bainbridge GJ, Ridgway JP, Sivananthan MU. Cardiac MR imaging with external respirator: synchronizing cardiac and respiratory motion–feasibility study. Radiology. 2003;227:877–82. https://doi.org/10.1148/radiol.2273020148. Rahsepar AA, Saybasili H, Ghasemiesfe A, Dolan RS, Shehata ML, Botelho MP, et al. Motion-corrected real-time cine magnetic resonance imaging of the heart: initial clinical experience. Invest Radiol. 2018;53:35–44. https://doi.org/10.1097/RLI.0000000000000406. Kellman P, Chefd’hotel C, Lorenz CH, Mancini C, Arai AE, McVeigh ER. High spatial and temporal resolution cardiac cine MRI from retrospective reconstruction of data acquired in real time using motion correction and resorting. Magn Reson Med. 2009;62:1557–64. https://doi.org/10.1002/mrm.22153. Cain PA, Ahl R, Hedstrom E, Ugander M, Allansdotter-Johnsson A, Friberg P, et al. Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study. BMC Med Imaging. 2009;9:2. https://doi.org/10.1186/1471-2342-9-2. Liu J, Rapin J, Chang T, Lefebvre A, Zenge M, Mueller E, et al. Dynamic cardiac MRI reconstruction with weighted redundant Haar wavelets. ISMRM. 2012;20:178. Kocaoglu M, Pednekar AS, Wang H, Alsaied T, Taylor MD, Rattan MS. Breath-hold and free-breathing quantitative assessment of biventricular volume and function using compressed SENSE: a clinical validation in children and young adults. J Cardiovasc Magn Reson. 2020;22:54. https://doi.org/10.1186/s12968-020-00642-y. Kellman P, Larson AC, Hsu LY, Chung YC, Simonetti OP, McVeigh ER, et al. Motion-corrected free-breathing delayed enhancement imaging of myocardial infarction. Magn Reson Med. 2005;53:194–200. https://doi.org/10.1002/mrm.20333. Becker M, Frauenrath T, Hezel F, Krombach GA, Kremer U, Koppers B, et al. Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP cine MR imaging at 1.5 T and 3.0 T. Eur Radiol. 2010;20:1344–55. https://doi.org/10.1007/s00330-009-1676-z. Wang S, Chauhan D, Patel H, Amir-Khalili A, Silva I, Sojoudi A, et al. Assessment of right ventricular size and function from cardiovascular magnetic resonance images using artificial intelligence. J Cardiovasc Magn Reson. 2022;24:27. https://doi.org/10.1186/s12968-022-00861-5. Wang J, Li X, Lin L, Dai JW, Schmidt M, Forman C, et al. Diagnostic efficacy of 2-shot compressed sensing cine sequence cardiovascular magnetic resonance imaging for left ventricular function. Cardiovasc Diagn Ther. 2020;10:431–41. https://doi.org/10.21037/cdt-20-135. Lee C, Kim YM, Lee CH, Kwak JG, Park CS, Song JY, et al. Outcomes of pulmonary valve replacement in 170 patients with chronic pulmonary regurgitation after relief of right ventricular outflow tract obstruction: implications for optimal timing of pulmonary valve replacement. J Am Coll Cardiol. 2012;60:1005–14. https://doi.org/10.1016/j.jacc.2012.03.077. Klinke V, Muzzarelli S, Lauriers N, Locca D, Vincenti G, Monney P, et al. Quality assessment of cardiovascular magnetic resonance in the setting of the European CMR registry: description and validation of standardized criteria. J Cardiovasc Magn Reson. 2013;15:55. https://doi.org/10.1186/1532-429X-15-55.