Free-Standing Single-Atom Catalyst-Based Electrodes for CO2 Reduction

Electrochemical Energy Reviews - Tập 7 - Trang 1-45 - 2024
M. Nur Hossain1, Lei Zhang1, Roberto Neagu1, Enoch Rassachack1
1Energy, Mining and Environment, National Research Council of Canada, Vancouver, Canada

Tóm tắt

Electrochemical CO2 reduction technology could solve the CO2-induced climate warming by electrochemically converting atmospheric CO2 back into fuel, essentially recycling it and building a low carbon emission economy. However, the electrochemical CO2 reduction reaction (CO2RR) poses a significant challenge due to the highly stable and linear CO2 molecules, in addition to a proton-coupled multi-electron transfer process. Thus, highly active catalysts, placed on activity bolstering materials, and permeable electrodes are crucial for CO2RR. Single-atom catalysts (SACs) have recently garnered increasing interest in the electrocatalysis community due to their potentially high mass efficiency and cost benefits (every atom is an active center, resulting in nearly 100% utilization) and adjustable selectivity (higher uniformity of the active sites compared to nanoparticles). However, preserving the accessibility and activity of the SACs inside the electrode poses major materials development and electrode design challenges. A conventional layered structure SAC electrode typically consists of a gas diffusion layer (GDL), a microporous layer (MPL) and a SAC catalyst layer (SACCL), fabricated by using a powder bonding process. However, this process usually encounters issues such as delamination and instability of SACs due to the weak binder-catalyst-support interface. Conversely, the free-standing SAC electrode design has the potential to overcome these issues by eliminating the GDL, MPL, and need of a binder, in contrast to the powder bonding process. This work first reviews the latest developments in experimental and modeling studies of powdered SAC electrode by the traditional powder bonding process. Next, it examines the development towards the free-standing SAC electrode for high-performance electrochemical reduction of CO2. The synthesis-structure-fabrication-performance relationships of SAC-based materials and associated electrodes are analyzed. Furthermore, the article presents future challenges and perspectives for high-performance SAC electrodes for CO2RR.

Tài liệu tham khảo

Spurgeon, J.M., Kumar, B.: A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11, 1536–1551 (2018). https://doi.org/10.1039/c8ee00097b Jouny, M., Luc, W., Jiao, F.: General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018). https://doi.org/10.1021/acs.iecr.7b03514 Li, X.F., Han, S.G., Wu, W.M., et al.: Convergent paired electrosynthesis of dimethyl carbonate from carbon dioxide enabled by designing the superstructure of axial oxygen coordinated nickel single-atom catalysts. Energy Environ. Sci. 16, 502–512 (2023). https://doi.org/10.1039/d2ee03022e Ju, W.B., Jiang, F.Z., Ma, H., et al.: Electrocatalytic reduction of gaseous CO2 to CO on Sn/Cu-nanofiber-based gas diffusion electrodes. Adv. Energy Mater. 9, 1901514 (2019). https://doi.org/10.1002/aenm.201901514 Kou, Z.K., Li, X., Wang, T.T., et al.: Fundamentals, on-going advances and challenges of electrochemical carbon dioxide reduction. Electrochem. Energy Rev. 5, 82–111 (2022). https://doi.org/10.1007/s41918-021-00096-5 Ren, S., Cao, X., Jiang, Z.N., et al.: Single-atom catalysts for electrochemical applications. Chem. Commun. 59, 2560–2570 (2023). https://doi.org/10.1039/d3cc00005b Liu, M.M., Wang, L.L., Zhao, K.N., et al.: Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 12, 2890–2923 (2019). https://doi.org/10.1039/c9ee01722d Mitchell, S., Pérez-Ramírez, J.: Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nat. Commun. 11, 4302 (2020). https://doi.org/10.1038/s41467-020-18182-5 Ma, W., Deng, Z., Zhang, X.J., et al.: Regulating the electronic structure of single-atom catalysts for electrochemical energy conversion. J. Mater. Chem. A. (2023). https://doi.org/10.1039/d3ta00156c Zhao, C.M., Dai, X.Y., Yao, T., et al.: Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 139, 8078–8081 (2017). https://doi.org/10.1021/jacs.7b02736 An, B.B., Zhou, J.S., Duan, L.J., et al.: Liquid nitrogen sources assisting gram-scale production of single-atom catalysts for electrochemical carbon dioxide reduction. Adv. Sci. 10, 2205639 (2023). https://doi.org/10.1002/advs.202205639 Cui, X.J., Li, W., Ryabchuk, P., et al.: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018). https://doi.org/10.1038/s41929-018-0090-9 Chen, Y.Q., Zhang, J.R., Yang, L.J., et al.: Recent advances in non-precious metal-nitrogen-carbon single-site catalysts for CO2 electroreduction reaction to CO. Electrochem. Energy Rev. 5, 1–31 (2022). https://doi.org/10.1007/s41918-022-00156-4 Fei, H.L., Dong, J.C., Arellano-Jiménez, M.J., et al.: Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). https://doi.org/10.1038/ncomms9668 Yang, H.B., Hung, S.F., Liu, S., et al.: Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8 Hai, X., Xi, S.B., Mitchell, S., et al.: Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 17, 174–181 (2022). https://doi.org/10.1038/s41565-021-01022-y Cheng, Y., Zhao, S.Y., Johannessen, B., et al.: Single-atom catalysts: atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 30, 1870088 (2018). https://doi.org/10.1002/adma.201870088 Li, Y., Adli, N.M., Shan, W.T., et al.: Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. Energy Environ. Sci. 15, 2108–2119 (2022). https://doi.org/10.1039/d2ee00318j Yang, H.Z., Shang, L., Zhang, Q.H., et al.: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 10, 4585 (2019). https://doi.org/10.1038/s41467-019-12510-0 Nguyen, T.N., Salehi, M., Le, Q.V., et al.: Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts. ACS Catal. 10, 10068–10095 (2020). https://doi.org/10.1021/acscatal.0c02643 Cheng, Y., Yang, S., Jiang, S.P., et al.: Supported single atoms as new class of catalysts for electrochemical reduction of carbon dioxide. Small Methods 3, 1800440 (2019) Creissen, C.E., Fontecave, M.: Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction. Nat. Commun. 13, 2280 (2022). https://doi.org/10.1038/s41467-022-30027-x Zhang, Z.D., Wang, D.S.: Single-atom catalysts: stimulating electrochemical CO2 reduction reaction in the industrial era. J. Mater. Chem. A 10, 5863–5877 (2022). https://doi.org/10.1039/d1ta07778c Jhong, H.R.M., Brushett, F.R., Yin, L.L., et al.: Combining structural and electrochemical analysis of electrodes using micro-computed tomography and a microfluidic fuel cell. J. Electrochem. Soc. 159, B292–B298 (2012). https://doi.org/10.1149/2.033203jes Nwabara, U.O., Cofell, E.R., Verma, S., et al.: Durable cathodes and electrolyzers for the efficient aqueous electrochemical reduction of CO2. Chemsuschem 13, 855–875 (2020). https://doi.org/10.1002/cssc.201902933 Ji, D.X., Fan, L., Li, L.L., et al.: Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 31, 1808267 (2019). https://doi.org/10.1002/adma.201808267 Xie, W.F., Song, Y.K., Li, S.J., et al.: Single-atomic-Co electrocatalysts with self-supported architecture toward oxygen-involved reaction. Adv. Funct. Mater. 29, 1906477 (2019). https://doi.org/10.1002/adfm.201906477 Yang, H.P., Lin, Q., Wu, Y., et al.: Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy 70, 104454 (2020). https://doi.org/10.1016/j.nanoen.2020.104454 He, Y.H., Liu, S.W., Priest, C., et al.: Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 49, 3484–3524 (2020). https://doi.org/10.1039/c9cs00903e Zhang, N.Q., Zhang, X.X., Tao, L., et al.: Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem. Int. Ed. 60, 6170–6176 (2021). https://doi.org/10.1002/anie.202014718 Li, Y.F., Chen, C., Cao, R., et al.: Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl. Catal. B Environ. 268, 118747 (2020). https://doi.org/10.1016/j.apcatb.2020.118747 Jiang, K., Siahrostami, S., Zheng, T.T., et al.: Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018). https://doi.org/10.1039/c7ee03245e Lu, P.L., Yang, Y.J., Yao, J.N., et al.: Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction. Appl. Catal. B Environ. 241, 113–119 (2019). https://doi.org/10.1016/j.apcatb.2018.09.025 Wang, X.Q., Chen, Z., Zhao, X.Y., et al.: Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57, 1944–1948 (2018). https://doi.org/10.1002/anie.201712451 Pan, Y., Lin, R., Chen, Y.J., et al.: Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814 Li, S.M., Zhao, S.Q., Lu, X.Y., et al.: Low-valence Znδ+ (0<δ<2) single-atom material as highly efficient electrocatalyst for CO2 reduction. Angew. Chem. Int. Ed. 60, 22826–22832 (2021). https://doi.org/10.1002/anie.202107550 Liu, J.J., Yang, D., Zhou, Y., et al.: Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 60, 14473–14479 (2021). https://doi.org/10.1002/anie.202103398 Wang, X.Y., Sang, X.H., Dong, C.L., et al.: Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites. Angew. Chem. Int. Ed. 60, 11959–11965 (2021). https://doi.org/10.1002/anie.202100011 Yang, F., Song, P., Liu, X.Z., et al.: Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem. Int. Ed. 57, 12303–12307 (2018). https://doi.org/10.1002/anie.201805871 Jeong, H.Y., Balamurugan, M., Choutipalli, V.S.K., et al.: Achieving highly efficient CO2 to CO electroreduction exceeding 300 mA cm–2 with single-atom nickel electrocatalysts. J. Mater. Chem. A 7, 10651–10661 (2019). https://doi.org/10.1039/c9ta02405k Zheng, T.T., Jiang, K., Ta, N., et al.: Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265–278 (2019). https://doi.org/10.1016/j.joule.2018.10.015 Wang, Y., Jiang, Z., Zhang, X., et al.: Metal phthalocyanine-derived single-atom catalysts for selective CO2 electroreduction under high current densities. ACS Appl. Mater. Interfaces 12, 33795–33802 (2020). https://doi.org/10.1021/acsami.0c08940 Wen, C.F., Mao, F.X., Liu, Y.W., et al.: Nitrogen-stabilized low-valent Ni motifs for efficient CO2 electrocatalysis. ACS Catal. 10, 1086–1093 (2020). https://doi.org/10.1021/acscatal.9b02978 Yang, H.P., Wu, Y., Li, G.D., et al.: Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 141, 12717–12723 (2019). https://doi.org/10.1021/jacs.9b04907 Zhang, H.N., Li, J., Xi, S.B., et al.: A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 58, 14871–14876 (2019). https://doi.org/10.1002/anie.201906079 Yang, H.P., Lin, Q., Zhang, C., et al.: Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 11, 593 (2020). https://doi.org/10.1038/s41467-020-14402-0 Rong, X., Wang, H.J., Lu, X.L., et al.: Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem. Int. Ed. 59, 1961–1965 (2020). https://doi.org/10.1002/anie.201912458 Li, S.M., Ceccato, M., Lu, X.Y., et al.: Incorporation of nickel single atoms into carbon paper as self-standing electrocatalyst for CO2 reduction. J. Mater. Chem. A 9, 1583–1592 (2021). https://doi.org/10.1039/d0ta08433f Zhao, C.M., Wang, Y., Li, Z.J., et al.: Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule 3, 584–594 (2019). https://doi.org/10.1016/j.joule.2018.11.008 Shang, H.S., Wang, T., Pei, J.J., et al.: Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem. Int. Ed. 59, 22465–22469 (2020). https://doi.org/10.1002/anie.202010903 Chen, D.T., Zhang, L.H., Du, J., et al.: A tandem strategy for enhancing electrochemical CO2 reduction activity of single-atom Cu-S1N3 catalysts via integration with Cu nanoclusters. Angew. Chem. Int. Ed. 60, 24022–24027 (2021). https://doi.org/10.1002/anie.202109579 Wu, Y.H., Chen, C.J., Yan, X.P., et al.: Boosting CO2 electroreduction over a cadmium single-atom catalyst by tuning of the axial coordination structure. Angew. Chem. Int. Ed. 60, 20803–20810 (2021). https://doi.org/10.1002/anie.202105263 Han, L.L., Song, S.J., Liu, M.J., et al.: Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 142, 12563–12567 (2020). https://doi.org/10.1021/jacs.9b12111 Sui, R., Pei, J.J., Fang, J.J., et al.: Engineering Ag-Nx single-atom sites on porous concave N-doped carbon for boosting CO2 electroreduction. ACS Appl. Mater. Interfaces 13, 17736–17744 (2021). https://doi.org/10.1021/acsami.1c03638 Wei, S.M., Jiang, X.X., He, C.Y., et al.: Construction of single-atom copper sites with low coordination number for efficient CO2 electroreduction to CH4. J. Mater. Chem. A 10, 6187–6192 (2022). https://doi.org/10.1039/d1ta08494a Mou, K.W., Chen, Z.P., Zhang, X.X., et al.: Highly efficient electroreduction of CO2 on nickel single-atom catalysts: atom trapping and nitrogen anchoring. Small 15, 1903668 (2019). https://doi.org/10.1002/smll.201903668 Chen, Z.P., Zhang, X.X., Liu, W., et al.: Amination strategy to boost the CO2 electroreduction current density of M–N/C single-atom catalysts to the industrial application level. Energy Environ. Sci. 14, 2349–2356 (2021). https://doi.org/10.1039/d0ee04052e Pan, F.P., Li, B.Y., Sarnello, E., et al.: Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction. ACS Catal. 10, 10803–10811 (2020). https://doi.org/10.1021/acscatal.0c02499 Hossain, M.N., Choueiri, R.M., Abner, S., et al.: Electrochemical reduction of carbon dioxide at TiO2/Au nanocomposites. ACS Appl. Mater. Interfaces 14, 51889–51899 (2022). https://doi.org/10.1021/acsami.2c14368 Luna, P.D., Hahn, C., Higgins, D., et al.: What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019). https://doi.org/10.1126/science.aav3506 Abdinejad, M., Ferrag, C., Hossain, M.N., et al.: Capture and electroreduction of CO2 using highly efficient bimetallic Pd-Ag aerogels paired with carbon nanotubes. J. Mater. Chem. A 9, 12870–12877 (2021). https://doi.org/10.1039/d1ta01834e Nur Hossain, M., Chen, S., Chen, A.C.: Thermal-assisted synthesis of unique Cu nanodendrites for the efficient electrochemical reduction of CO2. Appl. Catal. B Environ. 259, 118096 (2019). https://doi.org/10.1016/j.apcatb.2019.118096 Zang, Y.P., Wei, P.F., Li, H.F., et al.: Catalyst design for electrolytic CO2 reduction toward low-carbon fuels and chemicals. Electrochem. Energy Rev. 5, 1–30 (2022). https://doi.org/10.1007/s41918-022-00140-y Hossain, M.N., Liu, Z.G., Wen, J.L., et al.: Enhanced catalytic activity of nanoporous Au for the efficient electrochemical reduction of carbon dioxide. Appl. Catal. B Environ. 236, 483–489 (2018). https://doi.org/10.1016/j.apcatb.2018.05.053 Li, C.W., Ciston, J., Kanan, M.W.: Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014). https://doi.org/10.1038/nature13249 Hossain, M.N., Ahmad, S., Kraatz, H.B.: Synthesis and electrochemical study of coinage metal nanodendrites for hydrogen evolution reaction. Int. J. Hydrog. Energy 46, 2007–2017 (2021). https://doi.org/10.1016/j.ijhydene.2020.10.057 Abdinejad, M., Hossain, M.N., Kraatz, H.B.: Homogeneous and heterogeneous molecular catalysts for electrochemical reduction of carbon dioxide. RSC Adv. 10, 38013–38023 (2020). https://doi.org/10.1039/d0ra07973a Zhu, C.Z., Fu, S.F., Shi, Q.R., et al.: Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56, 13944–13960 (2017). https://doi.org/10.1002/anie.201703864 Wang, X.D., Hu, Q., Li, G.D., et al.: Recent advances and perspectives of electrochemical CO2 reduction toward C2+ products on Cu-based catalysts. Electrochem. Energy Rev. 5, 1–44 (2022). https://doi.org/10.1007/s41918-022-00171-5 Han, S.T., Jia, S.Q., Xia, W., et al.: A new strategy for mass production of single-atom catalysts for high performance of CO2 electrochemical reduction. Chem. Eng. J. 455, 140595 (2023). https://doi.org/10.1016/j.cej.2022.140595 Zhang, Z.D., Zhu, J.X., Chen, S.H., et al.: Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 135, e202215136 (2023). https://doi.org/10.1002/ange.202215136 Zhai, S.L., Sun, J.K., Sun, L., et al.: Heteronuclear dual single-atom catalysts for ambient conversion of CO2 from air to formate. ACS Catal. 13, 3915–3924 (2023). https://doi.org/10.1021/acscatal.2c06033 Dong, W.F., Zhang, N., Li, S.X., et al.: A Mn single atom catalyst with Mn-N2O2 sites integrated into carbon nanosheets for efficient electrocatalytic CO2 reduction. J. Mater. Chem. A 10, 10892–10901 (2022). https://doi.org/10.1039/d2ta01285e Chen, P.Z., Zhou, T.P., Xing, L.L., et al.: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56, 610–614 (2017). https://doi.org/10.1002/anie.201610119 He, Q., Lee, J.H., Liu, D.B., et al.: Accelerating CO2 electroreduction to CO over Pd single-atom catalyst. Adv. Funct. Mater. 30, 2000407 (2020). https://doi.org/10.1002/adfm.202000407 Mistry, H., Reske, R., Zeng, Z.H., et al.: Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 136, 16473–16476 (2014). https://doi.org/10.1021/ja508879j Li, M.H., Wang, H.F., Luo, W., et al.: Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 32, 2001848 (2020). https://doi.org/10.1002/adma.202001848 Stambula, S., Gauquelin, N., Bugnet, M., et al.: Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode. J. Phys. Chem. C 118, 3890–3900 (2014). https://doi.org/10.1021/jp408979h Zhang, Z.R., Feng, C., Liu, C.X., et al.: Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun. 11, 1215 (2020). https://doi.org/10.1038/s41467-020-14917-6 Leverett, J., Tran-Phu, T., Yuwono, J.A., et al.: Tuning the coordination structure of Cu-N-C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3– to urea. Adv. Energy Mater. 12, 2201500 (2022). https://doi.org/10.1002/aenm.202201500 Liu, Z.G., Hossain, M.N., Wen, J.L., et al.: Copper decorated with nanoporous gold by galvanic displacement acts as an efficient electrocatalyst for the electrochemical reduction of CO2. Nanoscale 13, 1155–1163 (2021). https://doi.org/10.1039/d0nr08138h Qiao, J.L., Liu, Y.Y., Hong, F., et al.: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014). https://doi.org/10.1039/c3cs60323g Hossain, M.N., Wen, J.L., Konda, S.K., et al.: Electrochemical and FTIR spectroscopic study of CO2 reduction at a nanostructured Cu/reduced graphene oxide thin film. Electrochem. Commun. 82, 16–20 (2017). https://doi.org/10.1016/j.elecom.2017.07.006 Hou, P.F., Huang, Y.H., Ma, F., et al.: S and N coordinated single-atom catalysts for electrochemical CO2 reduction with superior activity and selectivity. Appl. Surf. Sci. 619, 156747 (2023). https://doi.org/10.1016/j.apsusc.2023.156747 Chen, X.Y., Liu, W., Sun, Y.X., et al.: KOH-enabled axial-oxygen coordinated Ni single-atom catalyst for efficient electrocatalytic CO2 reduction. Small Methods 7, 2201311 (2023). https://doi.org/10.1002/smtd.202201311 Yan, C.C., Li, H.B., Ye, Y.F., et al.: Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 11, 1204–1210 (2018). https://doi.org/10.1039/c8ee00133b Pan, F.P., Zhang, H.G., Liu, K.X., et al.: Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 8, 3116–3122 (2018). https://doi.org/10.1021/acscatal.8b00398 Li, L., Jiang, Z., Li, Y.Y., et al.: Regulating morphological features of nickel single-atom catalysts for selective and enhanced electroreduction of CO2. Small Methods 7, 2201213 (2023). https://doi.org/10.1002/smtd.202201213 Li, X.G., Bi, W.T., Chen, M.L., et al.: Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 139, 14889–14892 (2017). https://doi.org/10.1021/jacs.7b09074 Xu, C.C., Vasileff, A., Wang, D., et al.: Synergistic catalysis between atomically dispersed Fe and a pyrrolic-N–C framework for CO2 electroreduction. Nanoscale Horiz. 4, 1411–1415 (2019). https://doi.org/10.1039/c9nh00361d Lei, C.J., Wang, Y., Hou, Y., et al.: Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 12, 149–156 (2019). https://doi.org/10.1039/c8ee01841c Gu, J., Hsu, C.S., Bai, L.C., et al.: Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Sci. 364, 1091–1094 (2019). https://doi.org/10.1126/science.aaw7515 Zhang, H.N., Li, J., Xi, S.B., et al.: A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 131, 15013–15018 (2019). https://doi.org/10.1002/ange.201906079 Lakshmanan, K., Huang, W.H., Chala, S.A., et al.: Highly active oxygen coordinated configuration of Fe single-atom catalyst toward electrochemical reduction of CO2 into multi-carbon products. Adv. Funct. Mater. 32, 2109310 (2022). https://doi.org/10.1002/adfm.202109310 Guo, Y., Yang, H.J., Zhou, X., et al.: Electrocatalytic reduction of CO2 to CO with 100% faradaic efficiency by using pyrolyzed zeolitic imidazolate frameworks supported on carbon nanotube networks. J. Mater. Chem. A 5, 24867–24873 (2017). https://doi.org/10.1039/c7ta08431e Li, X.N., Yang, X.F., Zhang, J.M., et al.: In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 9, 2521–2531 (2019). https://doi.org/10.1021/acscatal.8b04937 Liu, S., Yang, H.B., Hung, S.F., et al.: Inside cover: elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem. Int. Ed. 59, 510 (2020). https://doi.org/10.1002/anie.201915193 Fei, H.L., Dong, J.C., Feng, Y.X., et al.: General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y Xiao, M.L., Zhu, J.B., Ma, L., et al.: Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 8, 2824–2832 (2018). https://doi.org/10.1021/acscatal.8b00138 Zhao, Y., Liang, J.J., Wang, C.Y., et al.: Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Adv. Energy Mater. 8, 1702524 (2018). https://doi.org/10.1002/aenm.201702524 Qu, Y.T., Wang, L.G., Li, Z.J., et al.: Single-atom catalysts: ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater. 31, 1970316 (2019). https://doi.org/10.1002/adma.201970316 Li, K., Zhang, S.B., Zhang, X.L., et al.: Atomic tuning of single-atom Fe-N-C catalysts with phosphorus for robust electrochemical CO2 reduction. Nano Lett. 22, 1557–1565 (2022). https://doi.org/10.1021/acs.nanolett.1c04382 Pan, F.P., Li, B.Y., Sarnello, E., et al.: Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction. ACS Nano 14, 5506–5516 (2020). https://doi.org/10.1021/acsnano.9b09658 Chen, Y.B., Zou, L.L., Liu, H., et al.: Fe and N co-doped porous carbon nanospheres with high density of active sites for efficient CO2 electroreduction. J. Phys. Chem. C 123, 16651–16659 (2019). https://doi.org/10.1021/acs.jpcc.9b02195 Zhang, Y., Jiao, L., Yang, W.J., et al.: Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem. Int. Ed. 60, 7607–7611 (2021). https://doi.org/10.1002/anie.202016219 Fan, Q., Hou, P.F., Choi, C., et al.: Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2. Adv. Energy Mater. 10, 1903068 (2020). https://doi.org/10.1002/aenm.201903068 Zhu, W.J., Zhang, L., Liu, S.H., et al.: Enhanced CO2 electroreduction on neighboring Zn/Co monomers by electronic effect. Angew. Chem. Int. Ed. 132, 12764–12768 (2020). https://doi.org/10.1002/ange.201916218 Hao, Z.J., Chen, J.X., Zhang, D.F., et al.: Coupling effects of Zn single atom and high curvature supports for improved performance of CO2 reduction. Sci. Bull. 66, 1649–1658 (2021). https://doi.org/10.1016/j.scib.2021.04.020 Geng, Z.G., Cao, Y.J., Chen, W.X., et al.: Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction. Appl. Catal. B Environ. 240, 234–240 (2019). https://doi.org/10.1016/j.apcatb.2018.08.075 Zhu, D.D., Liu, J.L., Qiao, S.Z.: Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–3452 (2016). https://doi.org/10.1002/adma.201504766 Zhang, L., Zhao, Z.J., Gong, J.L.: Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem. Int. Ed. 56, 11326–11353 (2017). https://doi.org/10.1002/anie.201612214 Hossain, M.N.: Electrochemical reduction of carbon dioxide on nanostructured catalysts. Lakehead University (2018) Liu, M., Pang, Y.J., Zhang, B., et al.: Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016). https://doi.org/10.1038/nature19060 Sheng, W.C., Kattel, S., Yao, S.Y., et al.: Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 10, 1180–1185 (2017). https://doi.org/10.1039/c7ee00071e Xun, W., Yang, X., Jiang, Q.S., et al.: Single-atom-anchored two-dimensional MoSi2N4 monolayers for efficient electroreduction of CO2 to formic acid and methane. ACS Appl. Energy Mater. 6, 3236–3243 (2023). https://doi.org/10.1021/acsaem.2c03687 Kim, C., Jeon, H.S., Eom, T., et al.: Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 137, 13844–13850 (2015). https://doi.org/10.1021/jacs.5b06568 Guo, W., Shim, K., Ngome, F.O.O., et al.: Highly active coral-like porous silver for electrochemical reduction of CO2 to CO. J. CO2 Util. 41, 101242 (2020). https://doi.org/10.1016/j.jcou.2020.101242 Fan, T.T., Wu, Q.L., Yang, Z., et al.: Electrochemically driven formation of sponge-like porous silver nanocubes toward efficient CO2 electroreduction to CO. Chemsuschem 13, 2677–2683 (2020). https://doi.org/10.1002/cssc.201903558 Liu, S.B., Tao, H.B., Zeng, L., et al.: Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J. Am. Chem. Soc. 139, 2160–2163 (2017). https://doi.org/10.1021/jacs.6b12103 Ren, W.H., Tan, X., Yang, W.F., et al.: Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58, 6972–6976 (2019). https://doi.org/10.1002/anie.201901575 Dai, L., Qin, Q., Wang, P., et al.: Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide. Sci. Adv. 3, e1701069 (2017). https://doi.org/10.1126/sciadv.1701069 Jiao, J.Q., Lin, R., Liu, S.J., et al.: Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019). https://doi.org/10.1038/s41557-018-0201-x Rogers, C., Perkins, W.S., Veber, G., et al.: Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes. J. Am. Chem. Soc. 139, 4052–4061 (2017). https://doi.org/10.1021/jacs.6b12217 Kim, D., Xie, C.L., Becknell, N., et al.: Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 139, 8329–8336 (2017). https://doi.org/10.1021/jacs.7b03516 Gao, D.F., Zhang, Y., Zhou, Z.W., et al.: Enhancing CO2 electroreduction with the metal–oxide interface. J. Am. Chem. Soc. 139, 5652–5655 (2017). https://doi.org/10.1021/jacs.7b00102 Zhang, X., Wu, Z.S., Zhang, X., et al.: Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017). https://doi.org/10.1038/ncomms14675 Han, N., Wang, Y., Ma, L., et al.: Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 3, 652–664 (2017). https://doi.org/10.1016/j.chempr.2017.08.002 Schreier, M., Héroguel, F., Steier, L., et al.: Solar conversion of CO2 to CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat. Energy 2, 17087 (2017). https://doi.org/10.1038/nenergy.2017.87 Lin, S., Diercks, C.S., Zhang, Y.B., et al.: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015) Kramer, W.W., McCrory, C.C.L.: Polymer coordination promotes selective CO2 reduction by cobalt phthalocyanine. Chem. Sci. 7, 2506–2515 (2016). https://doi.org/10.1039/c5sc04015a Zhu, W.L., Zhang, Y.J., Zhang, H.Y., et al.: Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 136, 16132–16135 (2014). https://doi.org/10.1021/ja5095099 Lu, M., Zhang, M., Liu, C.G., et al.: Stable dioxin-linked metallophthalocyanine covalent organic frameworks (COFs) as photo-coupled electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 60, 4864–4871 (2021). https://doi.org/10.1002/anie.202011722 Zhang, Z., Xiao, J.P., Chen, X.J., et al.: Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57, 16339–16342 (2018). https://doi.org/10.1002/anie.201808593 Ma, X.M., Shen, Y.L., Yao, S., et al.: Core–shell nanoporous AuCu3@Au monolithic electrode for efficient electrochemical CO2 reduction. J. Mater. Chem. A 8, 3344–3350 (2020). https://doi.org/10.1039/c9ta09471g Pei, J.J., Wang, T., Sui, R., et al.: N-Bridged Co-N-Ni: new bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 14, 3019–3028 (2021). https://doi.org/10.1039/d0ee03947k Kim, M.K., Kim, H.J., Lim, H., et al.: Metal-organic framework-mediated strategy for enhanced methane production on copper nanoparticles in electrochemical CO2 reduction. Electrochim. Acta 306, 28–34 (2019). https://doi.org/10.1016/j.electacta.2019.03.101 Liu, S.B., Xiao, J., Lou, X.F., et al.: Efficient electrochemical reduction of CO2 to HCOOH over sub-2 nm SnO2 quantum wires with exposed grain boundaries. Angew. Chem. Int. Ed. 58, 8499–8503 (2019). https://doi.org/10.1002/anie.201903613 Zhu, S.Q., Qin, X.P., Wang, Q., et al.: Composition-dependent CO2 electrochemical reduction activity and selectivity on Au–Pd core–shell nanoparticles. J. Mater. Chem. A 7, 16954–16961 (2019). https://doi.org/10.1039/c9ta05325e Wen, G.B., Lee, D.U., Ren, B.H., et al.: Carbon dioxide electroreduction: orbital interactions in Bi–Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv. Energy Mater. 8, 1870138 (2018). https://doi.org/10.1002/aenm.201870138 Zhang, N.Q., Zhang, X.X., Kang, Y.K., et al.: A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 60, 13388–13393 (2021). https://doi.org/10.1002/anie.202101559 Li, M.R., Tian, X.H., Garg, S., et al.: Modulated Sn oxidation states over a Cu2O-derived substrate for selective electrochemical CO2 reduction. ACS Appl. Mater. Interfaces 12, 22760–22770 (2020). https://doi.org/10.1021/acsami.0c00412 Yang, H.P., Wu, Y., Lin, Q., et al.: Composition tailoring via N and S co-doping and structure tuning by constructing hierarchical pores: metal-free catalysts for high-performance electrochemical reduction of CO2. Angew. Chem. Int. Ed. 57, 15476–15480 (2018). https://doi.org/10.1002/anie.201809255 Sun, X.F., Lu, L., Zhu, Q.G., et al.: MoP nanoparticles supported on indium-doped porous carbon: outstanding catalysts for highly efficient CO2 electroreduction. Angew. Chem. Int. Ed. 57, 2427–2431 (2018). https://doi.org/10.1002/anie.201712221 Wang, H., Jia, J., Song, P.F., et al.: Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: a step towards the electrochemical CO2 refinery. Angew. Chem. Int. Ed. 56, 7847–7852 (2017) Wang, H.X., Chen, Y.B., Hou, X.L., et al.: Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green Chem. 18, 3250–3256 (2016). https://doi.org/10.1039/c6gc00410e Natsui, K., Iwakawa, H., Ikemiya, N., et al.: Stable and highly efficient electrochemical production of formic acid from carbon dioxide using diamond electrodes. Angew. Chem. Int. Ed. 57, 2639–2643 (2018). https://doi.org/10.1002/anie.201712271 Zhang, S., Kang, P., Ubnoske, S., et al.: Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136, 7845–7848 (2014). https://doi.org/10.1021/ja5031529 Sun, X.F., Kang, X.C., Zhu, Q.G., et al.: Very highly efficient reduction of CO2 to CH4 using metal-free N-doped carbon electrodes. Chem. Sci. 7, 2883–2887 (2016). https://doi.org/10.1039/c5sc04158a Lu, L., Sun, X.F., Ma, J., et al.: Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels. Angew. Chem. Int. Ed. 57, 14149–14153 (2018). https://doi.org/10.1002/anie.201808964 Song, Y.F., Chen, W., Zhao, C.C., et al.: Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew. Chem. Int. Ed. 56, 10840–10844 (2017). https://doi.org/10.1002/anie.201706777 Song, Y., Peng, R., Hensley, D.K., et al.: High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode. ChemistrySelect 1, 6055–6061 (2016). https://doi.org/10.1002/slct.201601169 Hoang, T.T.H., Verma, S., Ma, S.C., et al.: Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018). https://doi.org/10.1021/jacs.8b01868 Lin, L., Liu, T.F., Xiao, J.P., et al.: Enhancing CO2 electroreduction to methane with a cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst. Angew. Chem. Int. Ed. 59, 22408–22413 (2020). https://doi.org/10.1002/anie.202009191 Lin, L., Li, H.B., Yan, C.C., et al.: Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31, 1903470 (2019). https://doi.org/10.1002/adma.201903470 Dinh, C.T., Arquer, F.P.G., Sinton, D., et al.: High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 3, 2835–2840 (2018). https://doi.org/10.1021/acsenergylett.8b01734 Zhao, K., Nie, X.W., Wang, H.Z., et al.: Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 11, 2455 (2020). https://doi.org/10.1038/s41467-020-16381-8 Xiong, W.F., Li, H.F., Wang, H.M., et al.: (2020) Hollow mesoporous carbon sphere loaded Ni-N4 single-atom: support structure study for CO2 electrocatalytic reduction catalyst. Small 16, e2003943 (2020) Zhou, Y.N., Gao, G.P., Li, Y., et al.: Transition-metal single atoms in nitrogen-doped graphenes as efficient active centers for water splitting: a theoretical study. Phys. Chem. Chem. Phys. 21, 3024–3032 (2019). https://doi.org/10.1039/c8cp06755d Wang, X.Y., Wang, Y., Sang, X.H., et al.: Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem. Int. Ed. 60, 4192–4198 (2021). https://doi.org/10.1002/anie.202013427 Bi, W.T., Li, X.G., You, R., et al.: Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv. Mater. 30, 1706617 (2018). https://doi.org/10.1002/adma.201706617 Mohammad, A., Kibum, K., Cong, L., et al.: Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016) Ju, W., Bagger, A., Hao, G.P., et al.: Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017). https://doi.org/10.1038/s41467-017-01035-z Otani, M., Sugino, O.: First-principles calculations of charged surfaces and interfaces: a plane-wave nonrepeated slab approach. Phys. Rev. B 73, 115407 (2006). https://doi.org/10.1103/physrevb.73.115407 Peterson, A.A., Abild-Pedersen, F., Studt, F., et al.: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010). https://doi.org/10.1039/c0ee00071j Nørskov, J.K., Rossmeisl, J., Logadottir, A., et al.: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004). https://doi.org/10.1021/jp047349j Chen, J.X., Chen, Y.T., Li, P., et al.: Energetic span as a rate-determining term for electrocatalytic volcanos. ACS Catal. 8, 10590–10598 (2018). https://doi.org/10.1021/acscatal.8b03008 Huang, H.W., Jia, H.H., Liu, Z., et al.: Understanding of strain effects in the electrochemical reduction of CO2: using Pd nanostructures as an ideal platform. Angew. Chem. Int. Ed. 56, 3594–3598 (2017). https://doi.org/10.1002/anie.201612617 Wu, J., Sharif, T., Gao, Y., et al.: Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv. Mater. 31, 1804257 (2019) He, J.F., Dettelbach, K.E., Salvatore, D.A., et al.: High-throughput synthesis of mixed-metal electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 56, 6068–6072 (2017). https://doi.org/10.1002/anie.201612038 Gao, C., Chen, S.M., Wang, Y., et al.: Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: the role of electron transfer. Adv. Mater. 30, 1704624 (2018). https://doi.org/10.1002/adma.201704624 Hu, X.M., Rønne, M.H., Pedersen, S.U., et al.: Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. 56, 6468–6472 (2017). https://doi.org/10.1002/anie.201701104 Smith, P.T., Benke, B.P., Cao, Z., et al.: Iron porphyrins embedded into a supramolecular porous organic cage for electrochemical CO2 reduction in water. Angew. Chem. Int. Ed. 57, 9684–9688 (2018). https://doi.org/10.1002/anie.201803873 Zhu, M.H., Chen, J.C., Huang, L.B., et al.: Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew. Chem. Int. Ed. 58, 6595–6599 (2019) Xu, S.M., Liang, X., Ren, Z.C., et al.: Free-standing air cathodes based on 3D hierarchically porous carbon membranes: kinetic overpotential of continuous macropores in Li-O2 batteries. Angew. Chem. Int. Ed. 57, 6825–6829 (2018). https://doi.org/10.1002/anie.201801399 Chen, S., Hossain, M.N., Chen, A.C.: Significant enhancement of the photoelectrochemical activity of CuWO4 by using a cobalt phosphate nanoscale thin film. ChemElectroChem 5, 523–530 (2018). https://doi.org/10.1002/celc.201700991 Hossain, M.N., Chen, S., Chen, A.C.: Fabrication and electrochemical study of ruthenium-ruthenium oxide/activated carbon nanocomposites for enhanced energy storage. J. Alloy. Compd. 751, 138–147 (2018). https://doi.org/10.1016/j.jallcom.2018.04.104 Sassone, D., Zeng, J.Q., Fontana, M., et al.: Polymer-metal complexes as emerging catalysts for electrochemical reduction of carbon dioxide. J. Appl. Electrochem. 51, 1301–1311 (2021) Qiao, B.T., Wang, A.Q., Yang, X.F., et al.: Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). https://doi.org/10.1038/nchem.1095 Ding, K., Gulec, A., Johnson, A.M., et al.: Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015) Han, Y.H., Wang, Y.G., Chen, W.X., et al.: Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 139, 17269–17272 (2017). https://doi.org/10.1021/jacs.7b10194 Zhu, Y.Q., Sun, W.M., Chen, W.X., et al.: Scale-up biomass pathway to cobalt single-site catalysts anchored on N-doped porous carbon nanobelt with ultrahigh surface area. Adv. Funct. Mater. 28, 1802167 (2018). https://doi.org/10.1002/adfm.201802167 Han, Y.H., Wang, Z.Y., Xu, R.R., et al.: Ordered porous nitrogen-doped carbon matrix with atomically dispersed cobalt sites as an efficient catalyst for dehydrogenation and transfer hydrogenation of N-heterocycles. Angew. Chem. Int. Ed. 57, 11262–11266 (2018). https://doi.org/10.1002/anie.201805467 Hossain, M.N., Wen, J.L., Chen, A.C.: Unique copper and reduced graphene oxide nanocomposite toward the efficient electrochemical reduction of carbon dioxide. Sci. Rep. 7, 3184 (2017). https://doi.org/10.1038/s41598-017-03601-3 Albo, J., Vallejo, D., Beobide, G., et al.: Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. Chemsuschem 10, 1100–1109 (2017). https://doi.org/10.1002/cssc.201600693 Albo, J., Alvarez-Guerra, M., Castaño, P., et al.: Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem. 17, 2304–2324 (2015). https://doi.org/10.1039/c4gc02453b Hossain, M.N., Ahmad, S., Silva, I.S., et al.: Electrochemical reduction of CO2 at coinage metal nanodendrites in aqueous ethanolamine. Chem. Eur. J. 27, 1346–1355 (2021). https://doi.org/10.1002/chem.202003039 Keerthiga, G., Viswanathan, B., Chetty, R.: Electrochemical reduction of CO2 on electrodeposited Cu electrodes crystalline phase sensitivity on selectivity. Catal. Today 245, 68–73 (2015). https://doi.org/10.1016/j.cattod.2014.08.008 Zhai, Q.G., Xie, S.J., Fan, W.Q., et al.: Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core–shell structure. Angew. Chem. 125, 5888–5891 (2013). https://doi.org/10.1002/ange.201301473 Manthiram, K., Beberwyck, B.J., Alivisatos, A.P.: Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 136, 13319–13325 (2014). https://doi.org/10.1021/ja5065284 Xie, J.F., Huang, Y.X., Li, W.W., et al.: Efficient electrochemical CO2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite. Electrochim. Acta 139, 137–144 (2014). https://doi.org/10.1016/j.electacta.2014.06.034 Kim, D., Resasco, J., Yu, Y., et al.: Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014). https://doi.org/10.1038/ncomms5948 Li, F., Han, G.F., Noh, H.J., et al.: Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 11, 2263–2269 (2018). https://doi.org/10.1039/c8ee01169a Qu, Y.T., Li, Z.J., Chen, W.X., et al.: Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 1, 781–786 (2018). https://doi.org/10.1038/s41929-018-0146-x Andronescu, C., Barwe, S., Ventosa, E., et al.: Powder catalyst fixation for post-electrolysis structural characterization of NiFe layered double hydroxide based oxygen evolution reaction electrocatalysts. Angew. Chem. Int. Ed. 56, 11258–11262 (2017). https://doi.org/10.1002/anie.201705385 Liu, K., Smith, W.A., Burdyny, T.: Introductory guide to assembling and operating gas diffusion electrodes for electrochemical CO2 reduction. ACS Energy Lett. 4, 639–643 (2019). https://doi.org/10.1021/acsenergylett.9b00137 Burdyny, T., Smith, W.A.: CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019). https://doi.org/10.1039/c8ee03134g Ren, S., Joulie, D., Salvatore, D., et al.: Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019) Jiang, K., Siahrostami, S., Akey, A.J., et al.: Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 3, 950–960 (2017). https://doi.org/10.1016/j.chempr.2017.09.014 Back, S., Lim, J., Kim, N.Y., et al.: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 8, 1090–1096 (2017). https://doi.org/10.1039/c6sc03911a Benson, E.E., Kubiak, C.P., Sathrum, A.J., et al.: Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89–99 (2009). https://doi.org/10.1039/b804323j Choi, J., Kim, J., Wagner, P., et al.: Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel. Energy Environ. Sci. 12, 747–755 (2019). https://doi.org/10.1039/c8ee03403f Fan, Q., Zhang, M.L., Jia, M.W., et al.: Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater. Today Energy 10, 280–301 (2018). https://doi.org/10.1016/j.mtener.2018.10.003 Jiang, K., Sandberg, R.B., Akey, A.J., et al.: Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018). https://doi.org/10.1038/s41929-017-0009-x Huang, J.F., Mensi, M., Oveisi, E., et al.: Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J. Am. Chem. Soc. 141, 2490–2499 (2019). https://doi.org/10.1021/jacs.8b12381 Sung, S., Li, X.H., Wolf, L.M., et al.: Synergistic effects of imidazolium-functionalization on fac-Mn(CO)3 bipyridine catalyst platforms for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 141, 6569–6582 (2019). https://doi.org/10.1021/jacs.8b13657 Sanchez, F., Motta, D., Roldan, A., et al.: Hydrogen generation from additive-free formic acid decomposition under mild conditions by Pd/C: experimental and DFT studies. Top. Catal. 61, 254–266 (2018). https://doi.org/10.1007/s11244-018-0894-5 Lei, Y.P., Wang, Y.C., Liu, Y., et al.: Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem. Int. Ed. 59, 20794–20812 (2020). https://doi.org/10.1002/anie.201914647 Liu, X.Y., Xiao, J.P., Peng, H.J., et al.: Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017). https://doi.org/10.1038/ncomms15438 Guo, Y.B., Yao, S., Xue, Y.Y., et al.: Nickel single-atom catalysts intrinsically promoted by fast pyrolysis for selective electroreduction of CO2 into CO. Appl. Catal. B Environ. 304, 120997 (2022). https://doi.org/10.1016/j.apcatb.2021.120997 Wu, J.J., Ma, S.C., Sun, J., et al.: A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 13869 (2016). https://doi.org/10.1038/ncomms13869 Jiao, Y., Zheng, Y., Chen, P., et al.: Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 139, 18093–18100 (2017). https://doi.org/10.1021/jacs.7b10817 Di, J., Chen, C., Yang, S.Z., et al.: Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 10, 2840 (2019). https://doi.org/10.1038/s41467-019-10392-w Xie, J.F., Zhao, X.T., Wu, M.X., et al.: Inside back cover: metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angew. Chem. Int. Ed. 57, 9981–9981 (2018). https://doi.org/10.1002/anie.201805218 Favaro, M., Xiao, H., Cheng, T., et al.: Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl. Acad. Sci. 114, 6706–6711 (2017). https://doi.org/10.1073/pnas.1701405114 Nie, X.W., Esopi, M.R., Janik, M.J., et al.: Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459–2462 (2013). https://doi.org/10.1002/anie.201208320 Nie, X.W., Luo, W.J., Janik, M.J., et al.: Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J. Catal. 312, 108–122 (2014). https://doi.org/10.1016/j.jcat.2014.01.013 Greiner, M.T., Jones, T.E., Beeg, S., et al.: Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018). https://doi.org/10.1038/s41557-018-0125-5 Ren, D., Deng, Y.L., Handoko, A.D., et al.: Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814–2821 (2015). https://doi.org/10.1021/cs502128q Handoko, A.D., Chan, K.W., Yeo, B.S.: –CH3 mediated pathway for the electroreduction of CO2 to ethane and ethanol on thick oxide-derived copper catalysts at low overpotentials. ACS Energy Lett. 2, 2103–2109 (2017). https://doi.org/10.1021/acsenergylett.7b00514 Lee, S., Park, G., Lee, J.: Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 7, 8594–8604 (2017). https://doi.org/10.1021/acscatal.7b02822 Hori, Y., Takahashi, I., Koga, O., et al.: Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2002). https://doi.org/10.1021/jp013478d Zou, X.L., Liu, M.J., Wu, J.J., et al.: How nitrogen-doped graphene quantum dots catalyze electroreduction of CO2 to hydrocarbons and oxygenates. ACS Catal. 7, 6245–6250 (2017). https://doi.org/10.1021/acscatal.7b01839 Duan, X.C., Xu, J.T., Wei, Z.X., et al.: Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 29, 1701784–1701803 (2017). https://doi.org/10.1002/adma.201701784 Gao, D.F., Zhou, H., Wang, J., et al.: Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288–4291 (2015). https://doi.org/10.1021/jacs.5b00046 Gattrell, M., Gupta, N., Co, A.: A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1–19 (2006). https://doi.org/10.1016/j.jelechem.2006.05.013 Kuhl, K.P., Hatsukade, T., Cave, E.R., et al.: Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014). https://doi.org/10.1021/ja505791r Zhou, Y.S., Che, F.L., Liu, M., et al.: Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018). https://doi.org/10.1038/s41557-018-0092-x Wang, J., Zheng, M.Y., Zhao, X., et al.: Structure-performance descriptors and the role of the axial oxygen atom on M-N4-C single-atom catalysts for electrochemical CO2 reduction. ACS Catal. 12, 5441–5454 (2022). https://doi.org/10.1021/acscatal.2c00429 Peterson, A.A., Nørskov, J.K.: Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012). https://doi.org/10.1021/jz201461p Cao, H., Zhang, Z.S., Chen, J.W., et al.: Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catal. 12, 6606–6617 (2022). https://doi.org/10.1021/acscatal.2c01470 Lum, Y., Ager, J.W.: Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2018). https://doi.org/10.1038/s41929-018-0201-7 Morales-Guio, C.G., Cave, E.R., Nitopi, S.A., et al.: Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018). https://doi.org/10.1038/s41929-018-0139-9 Zhao, Z.L., Lu, G.: Cu-based single-atom catalysts boost electroreduction of CO2 to CH3OH: first-principles predictions. J. Phys. Chem. C 123, 4380–4387 (2019). https://doi.org/10.1021/acs.jpcc.8b12449 Wang, Y.F., Chen, Z., Han, P., et al.: Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 8, 7113–7119 (2018). https://doi.org/10.1021/acscatal.8b01014 Cheng, M.J., Clark, E.L., Pham, H.H., et al.: Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons. ACS Catal. 6, 7769–7777 (2016). https://doi.org/10.1021/acscatal.6b01393