Free‐Standing Nanostructured Architecture as a Promising Platform for High‐Performance Lithium–Sulfur Batteries

SMALL STRUCTURES - Tập 1 Số 3 - 2020
Lingyu Du1,2, Huimin Wang1, Min Yang1, Lili Liu2, Zhiqiang Niu1
1Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center College of Chemistry, Nankai University, Tianjin 300071, P.R. China
2Tianjin Key Laboratory for Photoelectric Materials and Devices School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 P. R. China

Tóm tắt

Lithium–sulfur (Li–S) batteries have attracted intensive attention due to their high energy density and low cost. However, Li–S batteries are still confronted with the challenges of low sulfur utilization, short cycle life, and unsatisfactory Coulombic efficiency. Free‐standing nanostructured architectures often have tunable features, such as strong mechanical properties, high electrical conductivity, and abundant porous structures, endowing them with the ability to serve as sulfur hosts, functional interlayers on separators, as well as lithium matrices. Herein, the electrochemical principles of Li–S batteries and the motivation for designing free‐standing architectures for sulfur cathodes, functional separators, and lithium anode protection are described. Furthermore, the recent progress on free‐standing sulfur cathodes based on carbon nanotubes, graphene, and MXenes is summarized in detail. In addition, the design of free‐standing nanostructured architectures in functional separators and lithium anode protection is also presented. Finally, future developments and prospects in the design of free‐standing architectures for Li–S batteries are discussed.

Từ khóa


Tài liệu tham khảo

10.1038/nchem.2085

10.1039/c2ee21892e

10.1002/adma.201405115

10.1002/adfm.201910375

10.1002/adma.201606823

10.1039/C5CS00410A

10.1039/C4CC05109B

10.1002/aenm.201903008

10.1016/j.joule.2019.01.003

10.1002/inf2.12097

10.1016/j.ensm.2019.04.042

10.1002/adma.201806532

10.1039/C9TA12910C

10.1039/C7CS00139H

10.1002/aenm.201700260

10.1002/aenm.202000082

10.1039/C9TA05347F

10.1002/aenm.201600554

10.1002/smll.201403170

10.1002/smll.201902719

10.1021/jp406757w

10.1016/j.nanoen.2017.10.053

10.1002/anie.201301250

10.1039/c2cp42796f

10.1039/c2ee22294a

10.1021/nl501486n

10.1021/acsnano.5b06675

10.1002/adfm.201401501

10.1021/acsnano.7b01437

10.1016/j.ensm.2017.04.004

10.1002/adfm.201602071

10.1002/smll.201804786

10.1002/anie.201504514

10.1016/j.nanoen.2014.11.062

10.1002/adma.201703324

10.1002/admi.201801992

10.1039/C7TA01526G

10.1002/anie.201700686

10.1021/acsami.8b00190

10.1039/C7TA06781J

10.1002/smll.201600809

10.1007/s12274-016-1027-8

10.1007/s12274-019-2356-1

10.1186/s11671-015-1152-4

10.1038/ncomms14628

10.1039/C9TA00485H

10.1039/C8TA06040A

10.1021/acsami.9b17200

10.1002/admi.201800766

10.1016/j.electacta.2018.12.112

10.1007/s11426-015-5511-x

10.1021/ja206955k

10.1039/C7NR00999B

10.1021/acssuschemeng.0c00243

10.1016/j.nanoen.2018.03.008

10.1016/j.jechem.2019.03.034

10.1007/s12274-017-1749-2

10.1021/acs.jpcc.5b02596

10.1039/c2ra22808d

10.1039/C6CP00512H

10.1016/j.nanoen.2014.11.060

10.1002/adma.201602262

10.1093/nsr/nwu072

Meng F., 2019, Handbook of Graphene Set

10.1002/smll.201400144

10.1039/c3ee43385d

10.1021/acs.accounts.5b00117

10.1038/nmat3001

10.1016/j.nanoen.2014.11.025

10.1002/adma.201504765

Xu Y., 2012, ACS Nano, 4, 4324, 10.1021/nn101187z

10.1021/jp909284g

10.1039/c1nr10355e

10.1016/j.carbon.2010.08.006

10.1021/nn401228t

10.1038/srep04629

10.1007/s12274-016-1005-1

10.1039/C6CP03624D

10.1016/j.nanoen.2015.01.007

10.1039/C4NR06863G

10.6023/A18040135

Chao W., 2015, J. Mater. Chem. A, 3, 9438, 10.1039/C5TA00343A

10.1039/C4TA06255H

10.1039/C7TA01291H

10.1016/j.nanoen.2019.04.006

10.1038/ncomms8760

10.1002/aenm.201402263

10.1002/cssc.201402329

10.1002/aenm.201702839

10.1016/j.jpowsour.2017.01.001

10.1038/ncomms14627

10.1016/j.isci.2018.05.005

10.1038/natrevmats.2016.98

10.1002/adma.201603040

10.1002/inf2.12080

10.1039/C9TA08600E

10.1021/acsnano.9b03412

10.1002/adfm.201901907

10.1002/adma.201404140

10.1002/chem.201702387

10.1002/adma.201200197

10.1039/C8NR08642G

10.1039/C9TA00212J

10.1039/C6MH00426A

10.1039/c2cc33945e

10.1021/acsami.9b00845

10.1016/j.jpowsour.2013.05.063

10.1016/j.electacta.2019.01.015

10.1016/j.carbon.2015.12.081

10.1016/j.jechem.2017.09.009

10.1002/adfm.201606663

10.1002/smtd.201900701

10.1002/adfm.201604069

10.1016/j.solidstatesciences.2019.06.013

10.1002/smll.201700357

10.1016/j.jpowsour.2015.02.140

10.1039/C9CP06287D

10.1002/adfm.202000742

10.1016/j.jpowsour.2014.09.141

10.1007/s10008-013-2351-5

10.1021/acsnano.7b07672

10.1021/acsami.6b09027

10.1038/ncomms2163

10.1007/s12274-016-1244-1

10.1103/PhysRevA.42.7355

10.1016/S0378-7753(01)00734-0

10.1002/adma.201602704

10.1002/adfm.201800595

10.1016/j.matt.2020.04.011

10.1002/aenm.201702322

10.1016/j.joule.2018.02.001

10.1002/smll.201800616

10.1002/adma.201703891

10.1002/smll.201401837

10.1039/C4TA01709A

10.1002/asia.201800326

10.1021/acsami.7b15879

10.1039/C4CC05535G

10.1002/ente.202000348

10.1002/adma.201801745