Free Energy of a Dilute Bose Gas: Lower Bound

Springer Science and Business Media LLC - Tập 279 - Trang 595-636 - 2008
Robert Seiringer1
1Department of Physics, Jadwin Hall, Princeton University, Princeton, USA

Tóm tắt

A lower bound is derived on the free energy (per unit volume) of a homogeneous Bose gas at density $$\varrho$$ and temperature T. In the dilute regime, i.e., when $$a^3\varrho \ll 1$$ , where a denotes the scattering length of the pair-interaction potential, our bound differs to leading order from the expression for non-interacting particles by the term $$4{\pi}a ( 2{\varrho^2}-[\varrho-\varrho_c]_+^2 )$$ . Here, $$\varrho_c(T)$$ denotes the critical density for Bose-Einstein condensation (for the non-interacting gas), and $$[\, \cdot \, ]_+ = \max\{ \, \cdot\, , 0\}$$ denotes the positive part. Our bound is uniform in the temperature up to temperatures of the order of the critical temperature, i.e., T ~ $$\varrho$$ 2/3 or smaller. One of the key ingredients in the proof is the use of coherent states to extend the method introduced in [17] for estimating correlations to temperatures below the critical one.

Tài liệu tham khảo

Berezin, F.A.: Covariant and contravariant symbols of operators. Izv. Akad. Nauk, Ser. Mat. 36, 1134–1167 (1972); English translation: USSR Izv. 6, 1117–1151 (1973); Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153–174 (1975) Dyson F.J. (1957). Ground-State Energy of a Hard-Sphere Gas. Phys. Rev. 106: 20–26 Hainzl C. and Seiringer R. (2002). General Decomposition of Radial Functions on \({\mathbb{R}}^n\) and Applications to N-Body Quantum SystemsLett. Math. Phys. 61: 75–84 Huang K. (1987). Statistical Mechanics 2nd ed. Wiley, New York Lieb E.H. (1973). The classical limit of quantum spin systems. Commun. Math. Phys. 31: 327–340 Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973); Lieb, E.H., Ruskai, M.B.: A Fundamental Property of Quantum Mechanical Entropy. Phys. Rev. Lett. 30, 434–436 (1973) Lieb E.H., Seiringer R. and Solovej J.P. (2005). Ground State Energy of the Low Density Fermi Gas. Phys. Rev. A 71: 053605 Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and its Condensation. Oberwolfach Seminars, Vol. 34, Basel-Boston: Birkhäuser, 2005 Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a Trap: A Rigorous Derivation of the Gross-Pitaevskii Energy Functional. Phys. Rev. A 61, 043602-1–13 (2000) Lieb E.H., Seiringer R. and Yngvason J. (2005). Justification of c-Number Substitutions in Bosonic Hamiltonians. Phys. Rev. Lett. 94: 080401 Lieb E.H. and Yngvason J. (1998). Ground State Energy of the Low Density Bose Gas. Phys. Rev. Lett. 80: 2504–2507 Lieb E.H. and Yngvason J. (2001). The Ground State Energy of a Dilute Two-Dimensional Bose Gas. J. Stat. Phys. 103: 509–526 Ohya M. and Petz D. (2004). Quantum Entropy and Its Use, Texts and Monographs in Physics. Springer, Berlin-Heidelberg-New York Robinson D.W. (1971). The Thermodynamic Pressure in Quantum Statistical Mechanics. Springer Lecture Notes in Physics, Vol. 9. Springer, Berlin-Heidelberg-New York Ruelle D. (1999). Statistical Mechanics. Rigorous Results. OverEdge, World Scientific Seiringer R. (2006). The Thermodynamic Pressure of a Dilute Fermi Gas. Commun. Math. Phys. 261: 729–758 Seiringer R. (2006). A Correlation Estimate for Quantum Many-Body Systems at Positive Temperature. Rev. Math. Phys. 18: 233–253