Fredholmness of pseudodifference operators in weighted Spaces
Tóm tắt
The aim of the paper is to present some results concerning pseudodifference operators on ℤN, which are a discrete analog of standard pseudodifferential operators on ℝN. We study the Fredholm property of pseudodifference operators acting in weighted l
p spaces on ℤN and the Phragmen-Lindelöf principle for solutions of pseudodifference equations and give applications of these results to discrete Schrö dinger operators on ℤN.
Tài liệu tham khảo
M. S. Agranovich, In: Sovrem. Probl. Mat., Fund. Naprav. [in Russian], Vol. 63, 1990, pp. 5–130.
V. V. Grushin, Funkts. Anal. Prilozhen., 4, No. 3, 37–50 (1970); English transl.: Functional Anal. Appl., 4, No. 3, 202–212 (1970).
P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes in Math., Vol. 3, Amer. Math. Soc., Providence, RI, 2000.
A. Jirari, Mem. Amer. Math. Soc., 113, No. 542 (1995).
M. E. Taylor, Pseudodifferential Operators, Princeton Univ. Press, Princeton, NJ, 1981.
G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices. Math. Surveys and Monographs, Vol. 72, Amer. Math. Soc., Providence, RI, 1999.