Fredholm pseudo-gradients for the action functional on a sub-manifold of dual Legendrian curves of a three dimensional contact manifold (M3, α)

Arabian Journal of Mathematics - Tập 3 - Trang 189-198 - 2014
A. Bahri1
1Rutgers, Department of Mathematics, The State University of New Jersey, Piscataway, USA

Tóm tắt

We prove in this paper that the intersection numbers between periodic orbits have an intrinsic meaning for the variational problem (J,C β ) {Bahri (Pseudo-Orbits of Contact Forms Pitman Research Notes in Mathematics Series No. 173, 1984), Bahri (C R Acad Sci Paris 299, Serie I 15:757–760, 1984), Bahri (Classical and Quantic periodic motions of multiply polarized spin-manifolds. Pitman Research Notes in Mathematics Series No. 378, 1998)}, corresponding to the periodic orbit problem on a sub-manifold of the loop space of a three dimensional compact contact manifold (M, α).

Tài liệu tham khảo

Aubin, T.: Nonlinear analysis on manifolds: Monge–Ampere equations. Springer, New York (1982) Bahri, T.: Pseudo-orbits of contact forms Pitman research notes in mathematics series No. 173. Scientific and Technical, London (1988) Bahri, A.: Un problème variationnel sans compacité dans la geométrie de contact. C. R. Acad. Sci. Paris 299, Serie I, 15, 757–760 (1984) Bahri, A.: Classical and quantic periodic motions of multiply polarized spin-manifolds. Pitman Research Notes in Mathematics Series No. 378. Longman and Addison, Wesley, London and Reading, MA (1998) Bahri, A.: Flow-lines and algebraic invariants in contact form geometry. PNLDE, vol. 53. Birkhauser, Boston (2003) Bahri, A.: Compactness. Adv. Nonlinear Stud. 8(3), 465–568 (2008) Bahri, A.: On the contact homology of the first exotic contact form/structure of J. Gonzalo and F. Varela. Arab. J. Math. 3. doi:10.1007/s40065-014-0097-2 (this issue) Bahri, A.:Morse relations and Fredholm deformations of v-convex contact forms. Arab. J. Math. 3. doi:10.1007/s40065-014-0098-1 (this issue) Bahri, A.; Brezis, H.: Nonlinear elliptic equations. In: Topics in geometry in memory of Joseph D’Atri, Simon, G. (ed), pp. 1–100. Birkhäuser, Boston–Basel–Berlin (1996) Bahri, A.; Coron, J.M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math 41, 253–294 (1988) Bahri, A.; Coron, J.M.: The scalar-curvature problem on the standard three-dimensional sphere. J. Funct. Anal 95(1), 106–172 (1991) Birkhoff, G.D.: Dynamical systems, vol 9. Americam Mathematical Society Colloquium Publications, Providence (1927) Conley, C.; Zehnder, E.: The Birkhoff–Lewis theorem and a conjecture of V. I Arnold. Inventiones Math. 73, 33–49 (1983) Eells, J.; Elworthy, K.D.: On Fredholm manifolds. Actes Congrès Intern. Math. Tome 2, 215–220 (1970) Eliashberg, Y.; Givental, A.; Hofer, H.: Introduction to symplectic field theory. Geom. Funct. Anal. 560–673 (2000) (Special volume, Part II) Floer, A.: The unregularized gradient flow of the symplectic action. Commun. Pure Appl. Math. 41, 775–813 (1988) Gluck, H.; Ziller, W.: Existence of periodic motions of conservative systems. Annals of Mathematics Studies, vol. 103, pp. 63–98. Princeton University Press, Princeton (1983) Gonzalo, J.; Varela, F.: Modèles variétés de contact. Third Schnepfenried geometry conference, Astérisque no. 107–108, vol. 1, pp. 163–168. SMF Publications, Paris (1983) Gromov, M.: Pseudo-holomorphic curves in symplectic manifolds. Inventiones Math. 82, 307–347 (1985) Hofer, H.: Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Inventiones Math. 114, 515–563 (1993) Hofer, H.: Lagrangian embeddings and critical point theory. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(6), 407–462 (1985) Morse, M.: The calculus of variations in the large. Am. Math. Soc. Colloquium Publications, Ann Arbor, Michigan 18 (1934) Oancea, A.: These D’Habilitation: La suite de Leray-Serre en homologie de Floer des variétes symplectiques compactes à à bord de type contact. Universite Paris 11. Orsay, France (2003) Palais, R.: Foundations of global nonlinear analysis. Benjamin, New York (1968) Rabinowitz, P.H.: Periodic solutions of Hamiltonian systems. Commun. Pure. Appl. Math. 31, 157–184 (1978) Salamon, D.: Lectures on Floer homology symplectic geometry and topology. In: Eliashberg, Y.; Traynor, L. (eds.) IAS/Park City Math. Series 7, AMS 143–229 (1999) Schoen, R.: Conformal deformation of a metric to constant scalar curvature. J. Differ. Geome. 20, 479–495 (1984) Seifert, H.: Periodische Bewegungen mechanischer Systeme. Math. Z. 51, 197–216 (1948) Shub, M.: Stabilité globale des systèmes dynamiques. Astérisque. Société Mathématique de France 56 (1978) Smale, S.: On gradient dynamical systems. Ann. Math. 74(2), 199–206 (1961) Smale, S.: An infinite dimensional version of Sard’s theorem. Am. J. Math. 87(4), 861–866 (1965) Weinstein, A.: On the hypotheses of Rabinowitz’ periodic orbit theorems. J. Differ. Equ. 33(3), 353–358 (1979) Weinstein, A.: Periodic orbits for convex Hamiltonian systems. Ann. Math. (2) 108(3), 507–518 (1978)