Framework for developing risk to life evaluation criteria associated with landslides in Canada
Tóm tắt
The application of quantitative risk assessments is increasing for decision-making in many industries and contexts, with the evaluation of risks against some adopted criteria. In this article, we review risk criteria developed and used for landslide management, in particular criteria associated with risk to life. We show that while this natural hazard is encountered worldwide, the social and regulatory contexts under which evaluation criteria are developed can vary significantly. Thus, the applicability of developed criteria to any specific situation should be assessed before adopting them elsewhere. We describe selected considerations for developing risk evaluation criteria, propose a framework for defining these criteria in Canada, and assess the applicability of previously proposed criteria. Examples of risk criteria development and adoption for new and existing residential developments and for railway employees are presented to illustrate some of these concepts.
Tài liệu tham khảo
Agrawal, N. 2018. Natural disasters and risk Management in Canada – An introduction. Vol. 366. Netherlands: Springer Nature.
Ale, B.J. 2005. Tolerable or acceptable: A comparison of risk regulation in the United Kingdom and the Netherlands. Risk Analysis 25: 231–241.
Association of Professional Engineers and Geoscientists of British Columbia (APEGBC) (2010) Guidelines for legislated landslide assessments for proposed residential developments in BC. Revised May 2010.
Australian Geomechanics Society (AGS). 2007. Practice note guidelines for landslide risk management 2007. Australian Geomechanics 42 (1): 63–114.
Australian National Committee on Large Dams (ANCOLD). 2003. Guidelines on risk assessment. Melbourne: Australian National Committee on Large Dams Inc..
Aven, T. 2016. Risk assessment and risk management: review of recent advances on their foundation. European Journal of Operational Research 253 (1): 1–13. https://doi.org/10.1016/j.ejor.2015.12.023.
Baecher, G.B., and J.T. Christian. 2003. Reliability and statistics in geotechnical engineering, 605. West Sussex: Wiley.
Bunce, C.M., D.M. Cruden, and N.R. Morgenstern. 1997. Assessment of the hazard from rock fall on a highway. Canadian Geotechnical Journal 34: 344–356.
Cadini, F., G.L. Agliardi, and E. Zio. 2017. Estimation of rare event probabilities in power transmission networks subject to cascading failures. Reliability Engineering and System Safety 158(C: 9–20.
Center for Chemical Process Safety (CCPS). 2009. Guidelines for developing quantitative safety risk criteria. Hoboken: Wiley.
Cha, E.J., and B.R. Ellingwood. 2012. Risk-averse decision-making for civil infrastructure exposed to low-probability, high-consequence events. Reliability Engineering and System Safety 104(C: 27–35.
Clague, J.J., and P.T. Bobrowsky. 2010. Natural hazards in Canada. Geoscience Canada 37 (1): 17–37.
Clague JJ, Hungr O, Morgenstern NR, VanDine DF. 2015 Cheekye River (Ch’kay Stakw) and Fan Landslide Risk Tolerance Criteria (pp. 1–77). Squamish: Squamish Nation and its Partnership, and District of Squamish.
Couture, R., A. Blais-Stevens, P. Bobrowsky, B. Wang, and D.F. VanDine. 2013. Canadian technical guidelines and best practices related to landslides. In Landslides: Global Risk Preparedness, ed. K. Sassa, B. Rouhban, S. Briceno, M. McSaveney, and B. He, 317–324. Berlin Heidelberg: Springer-Verlag.
ERM-Hong Kong Ltd. 1998. Landslides and boulder falls from natural terrain: Interim risk guidelines, 183. The Government of Hong Kong Special Administrative Region: ERM-Hong Kong Ltd.
Evans SG (1999) Landslide disasters in Canada, 1840–1998. Geological Survey of Canada, Open File 3712. Available from: https://geoscan.nrcan.gc.ca. Accessed 27 June 2018.
Fell, R. 1994. Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal 31: 261–272.
Fell R, Ho KKS, Lacasse S, Leroi E. 2005. A framework for landslide risk assessment and management. Hungr, Fell, Couture and Eberhardt (eds). Landslide risk management, Proceedings of the international conference on landslide risk management, A.A. Balkema, Vancouver, B.C., Canada: 3–25.
Finlay, P.J., and R. Fell. 1997. Landslides: Risk perception and acceptance. Canadian Geotechnical Journal 34: 169–188.
Frank, W., and D. Jones. 2010. Choosing appropriate quantitative safety risk criteria: Applications from the new CCPS guidelines. Process Safety Progress 29 (4): 293–298.
Heitz C, Shimabuku MN. 2017. The role of individuals’ risk representations in risk management - case-study on lahars in Arequipa (Peru). Geoenvironmental Disasters 4(28):12.
HSE (Health and Safety Executive, UK). 1992. The tolerability of risk from nuclear power stations. London: Her Majesty’s Stationery Office.
HSE (Health and Safety Executive, UK). 2001. Reducing risks, protecting people. London: Her Majesty’s Stationery Office.
Ho, K.K.S., E. Leroi, and W.J. Roberds. 2000. Quantitative risk assessment application, myths and future direction. Proceedings of the international conference on geotechnical and geological engineering (GeoEng2000), 269–312. Australia: Melbourne.
Hungr, O., J.J. Clague, N.R. Morgenstern, D.F. VanDine, and D. Stadel. 2016. A review of landslide risk acceptability practices in various countries. In Presented at the Landslides and Engineered Slopes. Experience, Theory and Practice, Rome, ed. E. A et al., 1121–1128.
IUGS. 1997. Quantitative risk assessment for slopes and landslides – the state of the art. IUGS working group on landslides, committee on risk assessment. Cruden and Fell (eds.), Landslide Risk Assessment, Proceedings of the International Workshop on Landslide Risk Assessment, Hawaii. Balkema, Rotterdam: 3–12.
Khan, F., S. Rathnayaka, and S. Ahmed. 2015. Methods and models in process safety and risk management: Past, present and future. Process Safety and Environmental Protection 98: 116–147.
Leroi E, Bonnard Ch, Fell R, McInnes R. 2005. Risk assessment and management. Hungr, Fell, Couture and Eberhardt (eds). Landslide risk management, Proceedings of the international conference on landslide risk management, A.A. Balkema, Vancouver, B.C., Canada: 159–198.
Macciotta, R., C.D. Martin, N.R. Morgenstern, and D.M. Cruden. 2016. Quantitative risk assessment of slope hazards along a section of railway in the Canadian cordillera—A methodology considering the uncertainty in the results. Landslides 13 (1): 115–127. https://doi.org/10.1007/s10346-014-0551-4.
Mignan, A., S. Wiemer, and D. Giardini. 2014. The quantification of low-probability–high-consequences events: Part I. A generic multi-risk approach. Natural Hazards 73 (3): 1999–2022.
Morgenstern NR (1995) Managing risk in geotechnical engineering. The 3rd Casagrande lecture. Proceedings 10 th Pan-American Conference on Soil Mechanics and Foundation Engineering, Guadalajara, Mexico 4: 102–126.
Morgenstern NR. 1997. Toward landslide risk assessment in practice. In Cruden and Fell (eds.) Landslide Risk Assessment, Proceedings of the International Workshop on Landslide Risk Assessment, Hawaii. Balkema, Rotterdam: 15–23.
Morrison J. 2014. The social license. London: Palgrave MacMillan.
Mostyn, G., and T. Sullivan. 2002. Quantitative risk assessment of the Thredbo landslide. Australian Geomechanics 37 (2): 169–181.
Oldenburg, C.M., and R.J. Budnitz. 2016. Low-probability high-consequence (LPHC) failure events in geologic carbon sequestration pipelines and wells: Framework for LPHC risk assessment incorporating spatial variability of risk. Energy geosciences division, Lawrence Berkley National Laboratory, 51. Berkley: University of California.
Pandey, M.D., and J.S. Nathwani. 2004. Life quality index for the estimation of societal willingness-to-pay for safety. Structural Safety 26 (2): 181–199.
Porter, M., M. Jakob, and K. Holm. 2009. Proposed landslide risk tolerance criteria. 62nd Canadian Geotechnical Conference and 10th Joint CGS/IAH-CNC Groundwater Conference, Halifax, Nova Scotia, Canada, 533–541.
Porter, M., and N. Morgenstern. 2013. Landslide Risk Evaluation. In Canadian Technical Guidelines and Best Practices Related to Landslides: a National Initiative For Loss Reduction. Natural Resources Canada, Geological Survey of Canada Open File 7312 Available from: https://geoscan.nrcan.gc.ca. Accessed June 27, 2018.
Porter MJ, Morgenstern NR. 2012. Landslide risk evaluation in Canada. Landslides and Engineered Slopes: Protecting Society Through Improved Understanding, Proceedings of the 11th International and 2nd North American Symposium on Landslides and Engineered Slopes, Banff, AB. Canada 3–8 June 2012. 1:237–243.
Prasad AS, Pandey BW, Leimgruber W, Kunwar RM. 2016. Mountain hazard susceptibility and livelihood security in the upper catchment area of the river Beas, Kullu Valley, Himachal Pradesh, India. Geoenvironmental Disasters 3(3):17.
Renn, O. 2008. Risk governance: Coping with uncertainty in a complex world. London: Earthscan.
Rowe, W.D. 1977. An Anatomy of Risk, 488. NY: Wiley.
Scarlett, L., I. Linkov, and C. Kousky. 2011. Risk Management Practices: Cross-Agency Comparisons with Minerals Management Service. Resources for the Future, Discussion Paper, 56.
Skjong, R. 2002. Risk acceptance criteria: Current proposals and IMO position. In Surface Transport Technologies for Sustainable Development, Valencia, Spain June 4-6, 2002.
Skjong R, Vanem E, Endresen O. 2005. Risk Evaluation Criteria. Design, Operation and Regulation for Safety - SAFEDOR Project (p. 117). The SAFEDOR Consortium.
Statistics Canada (2010) Mortality, Summary List of Causes 2007, catalogue no. 84F0209X. Electronic file from: www.statcan.gc.ca. Pg. 124. Extracted June 11, 2012.
Statistics Canada (2018) Deaths and age-specific mortality rates by selected group causes, Table 13–10–0392-01. https://www150.statcan.gc.ca. Accessed June 27, 2018.
U.S. Bureau of Reclamation. 2003. Guidelines for achieving public protection in dam safety decisionmaking. Denver: United States Department of the Interior.
Vanem, E. 2012. Principles for setting risk acceptance criteria for safety critical activities. In Advances in Safety, Reliability and Risk Management, ed. Bérenguer Grall and G. Soares, 1741–1751.
Vrijling, J.K., W. van Hengel, and R.J. Houben. 1998. Acceptable risk as a basis for design. Reliability Engineering & System Safety 59 (1): 141–150.
WorkSafeBC (2009) WorkSafeBC Statistics 2009. Available on line at: http://www.worksafebc.com/publications/reports/statistics_reports Pg. 127. Extracted June 11, 2012.