Frameshifting RNA pseudoknots: Structure and mechanism

Virus Research - Tập 139 Số 2 - Trang 193-208 - 2009
David Giedroc1, Peter V. Cornish2
1Department of Chemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405-7102, USA
2University of Illinois at Urbana Champaign

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abbondanzieri, 2005, Direct observation of base-pair stepping by RNA polymerase, Nature, 438, 460, 10.1038/nature04268

Adams, 2004, Crystal structure of a self-splicing group I intron with both exons, Nature, 430, 45, 10.1038/nature02642

Baranov, 2002, Recoding: translational bifurcations in gene expression, Gene, 286, 187, 10.1016/S0378-1119(02)00423-7

Baranov, 2004, P-site tRNA is a crucial initiator of ribosomal frameshifting, RNA, 10, 221, 10.1261/rna.5122604

Baranov, 2005, Programmed ribosomal frameshifting in decoding the SARS-CoV genome, Virology, 332, 498, 10.1016/j.virol.2004.11.038

Barry, 2002, A −1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA, Proc. Natl. Acad. Sci. U.S.A., 99, 11133, 10.1073/pnas.162223099

Beardsley, 2006, Probing the structure of the Caulobacter crescentus ribosome with chemical labeling and mass spectrometry, J. Proteome Res., 5, 2935, 10.1021/pr060170w

Belitsina, 1981, Template-free ribosomal synthesis of polylysine from lysyl-tRNA, FEBS Letters, 131, 289, 10.1016/0014-5793(81)80387-0

Belitsina, 1982, Template-free ribosomal synthesis of polypeptides from aminoacyl-tRNAs, Biosystems, 15, 233, 10.1016/0303-2647(82)90008-9

Bidou, 1997, In vivo HIV-1 frameshifting efficiency is directly related to the stability of the stem–loop stimulatory signal, RNA, 3, 1153

Biswas, 2004, The human immunodeficiency virus type 1 ribosomal frameshifting site is an invariant sequence determinant and an important target for antiviral therapy, J. Virol., 78, 2082, 10.1128/JVI.78.4.2082-2087.2004

Blanchard, 2008, Breaking the barriers of translation, Nat. Chem. Biol., 4, 275, 10.1038/nchembio0508-275

Blanchard, 2004, tRNA dynamics on the ribosome during translation, Proc. Natl. Acad. Sci. U.S.A., 101, 12893, 10.1073/pnas.0403884101

Boisbouvier, 2000, NMR determination of sugar puckers in nucleic acids from CSA-dipolar cross-correlated relaxation, J. Am. Chem. Soc., 122, 6779, 10.1021/ja000976b

Brierley, 1995, Ribosomal frameshifting viral RNAs, J. Gen. Virol., 76, 1885, 10.1099/0022-1317-76-8-1885

Brierley, 1987, An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV, EMBO J., 6, 3779, 10.1002/j.1460-2075.1987.tb02713.x

Brierley, 1989, Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot, Cell, 57, 537, 10.1016/0092-8674(89)90124-4

Brierley, 2006, Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV, Virus Res., 119, 29, 10.1016/j.virusres.2005.10.008

Brierley, 1992, Mutational analysis of the “slippery-sequence” component of a coronavirus ribosomal frameshifting signal, J. Mol. Biol., 227, 463, 10.1016/0022-2836(92)90901-U

Brierley, 2007, Viral RNA pseudoknots: versatile motifs in gene expression and replication, Nat. Rev. Microbiol., 5, 598, 10.1038/nrmicro1704

Brierley, 1991, Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal, J. Mol. Biol., 220, 889, 10.1016/0022-2836(91)90361-9

Brodersen, 2002, Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA, J. Mol. Biol., 316, 725, 10.1006/jmbi.2001.5359

Cao, 2008, Predicting ribosomal frameshifting efficiency, Phys. Biol., 5, 16002, 10.1088/1478-3975/5/1/016002

Cate, 1996, Crystal structure of a group I ribozyme domain: principles of RNA packing, Science, 273, 1678, 10.1126/science.273.5282.1678

Chamorro, 1992, An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA, Proc. Natl. Acad. Sci. U.S.A., 89, 713, 10.1073/pnas.89.2.713

Chen, 1995, Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting, EMBO J., 14, 842, 10.1002/j.1460-2075.1995.tb07062.x

Chen, 1996, A characteristic bent conformation of RNA pseudoknots promotes -1 frameshifting during translation of retroviral RNA, J. Mol. Biol., 260, 479, 10.1006/jmbi.1996.0415

Clark, 2007, Mammalian gene PEG10 expresses two reading frames by high efficiency −1 frameshifting in embryonic-associated tissues, J. Biol. Chem., 282, 37359, 10.1074/jbc.M705676200

Cornish, 2008, Spontaneous intersubunit rotation in single ribosomes, Mol. Cell, 30, 578, 10.1016/j.molcel.2008.05.004

Cornish, 2006, Pairwise coupling analysis of helical junction hydrogen bonding interactions in luteoviral RNA pseudoknots, Biochemistry, 45, 11162, 10.1021/bi060430n

Cornish, 2006, Dissecting non-canonical interactions in frameshift-stimulating mRNA pseudoknots, J. Biomol. NMR, 35, 209, 10.1007/s10858-006-9033-x

Cornish, 2005, A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated −1 ribosomal frameshifting, Proc. Natl. Acad. Sci. U.S.A., 102, 12694, 10.1073/pnas.0506166102

Cornish, 2006, The global structures of a wild-type and poorly functional plant luteoviral mRNA pseudoknot are essentially identical, RNA, 12, 1959, 10.1261/rna.199006

Dann, 2007, Structure and mechanism of a metal-sensing regulatory RNA, Cell, 130, 878, 10.1016/j.cell.2007.06.051

Deckman, 1987, S4-alpha mRNA translation repression complex. I. Thermodynamics of formation, J. Mol. Biol., 196, 313, 10.1016/0022-2836(87)90692-9

Dinman, 1991, A −1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein, Proc. Natl. Acad. Sci. U.S.A., 88, 174, 10.1073/pnas.88.1.174

Dinman, 2002, The frameshift signal of HIV-1 involves a potential intramolecular triplex RNA structure, Proc. Natl. Acad. Sci. U.S.A., 99, 5331, 10.1073/pnas.082102199

Dinos, 2005, Deacylated tRNA is released from the E site upon A site occupation but before GTP is hydrolyzed by EF-Tu, Nucleic Acids Res., 33, 5291, 10.1093/nar/gki833

Doherty, 2001, A universal mode of helix packing in RNA, Nat. Struct. Biol., 8, 339, 10.1038/86221

Dorner, 2006, The hybrid state of tRNA binding is an authentic translation elongation intermediate, Nat. Struct. Mol. Biol., 13, 234, 10.1038/nsmb1060

Du, 1996, Structure of the autoregulatory pseudoknot within the gene 32 messenger RNA of bacteriophages T2 and T6: a model for a possible family of structurally related RNA pseudoknots, Biochemistry, 35, 4187, 10.1021/bi9527350

Du, 1997, Base-pairings within the RNA pseudoknot associated with the simian retrovirus-1 gag-pro frameshift site, J. Mol. Biol., 270, 464, 10.1006/jmbi.1997.1127

Dulude, 2006, Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1, Virology, 345, 127, 10.1016/j.virol.2005.08.048

Dulude, 2008, Selection of peptides interfering with a ribosomal frameshift in the human immunodeficiency virus type 1, RNA, 14, 981, 10.1261/rna.887008

Egli, 2002, Metal ions and flexibility in a viral RNA pseudoknot at atomic resolution, Proc. Natl. Acad. Sci. U.S.A., 99, 4302, 10.1073/pnas.062055599

Ermolenko, 2007, Observation of intersubunit movement of the ribosome in solution using FRET, J. Mol. Biol., 370, 530, 10.1016/j.jmb.2007.04.042

Farabaugh, 1996, Programmed translational frameshifting, Annu. Rev. Genet., 30, 507, 10.1146/annurev.genet.30.1.507

Feinberg, 2001, Identification of molecular interactions between P-site tRNA and the ribosome essential for translocation, Proc. Natl. Acad. Sci. U.S.A., 98, 11120, 10.1073/pnas.211184098

Ferre-D’Amare, 1998, Crystal structure of a hepatitis delta virus ribozyme, Nature, 395, 567, 10.1038/26912

Frank, 2000, A ratchet-like inter-subunit reorganization of the ribosome during translocation, Nature, 406, 318, 10.1038/35018597

Gao, 2003, Study of the structural dynamics of the E. coli 70S ribosome using real-space refinement, Cell, 113, 789, 10.1016/S0092-8674(03)00427-6

Gaudin, 2005, Structure of the RNA signal essential for translational frameshifting in HIV-1, J. Mol. Biol., 349, 1024, 10.1016/j.jmb.2005.04.045

Gendron, 2008, The presence of the TAR RNA structure alters the programmed −1 ribosomal frameshift efficiency of the human immunodeficiency virus type 1 (HIV-1) by modifying the rate of translation initiation, Nucleic Acids Res., 36, 30, 10.1093/nar/gkm906

Gendron, 2005, The virion-associated Gag-Pol is decreased in chimeric Moloney murine leukemia viruses in which the readthrough region is replaced by the frameshift region of the human immunodeficiency virus type 1, Virology, 334, 342, 10.1016/j.virol.2005.01.044

Giedroc, 2003, Detection of scalar couplings involving 2′-hydroxyl protons across hydrogen bonds in a frameshifting mRNA pseudoknot, J. Am. Chem. Soc., 125, 4676, 10.1021/ja029286t

Giedroc, 2000, Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting, J. Mol. Biol., 298, 167, 10.1006/jmbi.2000.3668

Gilbert, 2008, Structure of the SAM-II riboswitch bound to S-adenosylmethionine, Nat. Struct. Mol. Biol., 15, 177, 10.1038/nsmb.1371

Golden, 2005, Crystal structure of a phage Twort group I ribozyme-product complex, Nat. Struct. Mol. Biol., 12, 82, 10.1038/nsmb868

Green, 2008, Characterization of the mechanical unfolding of RNA pseudoknots, J. Mol. Biol., 375, 511, 10.1016/j.jmb.2007.05.058

Greenleaf, 2008, Direct observation of hierarchical folding in single riboswitch aptamers, Science, 319, 630, 10.1126/science.1151298

Haebel, 2004, Dial tm for rescue: tmRNA engages ribosomes stalled on defective mRNAs, Curr. Opin. Struct. Biol., 14, 58, 10.1016/j.sbi.2004.01.010

Hansen, 2007, Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting, Proc. Natl. Acad. Sci. U.S.A., 104, 5830, 10.1073/pnas.0608668104

Harger, 2002, An ‘integrated model’ of programmed ribosomal frameshifting, Trends Biochem. Sci., 27, 448, 10.1016/S0968-0004(02)02149-7

Hohng, 2007, Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction, Science, 318, 279, 10.1126/science.1146113

Holbrook, 2005, RNA structure: the long and the short of it, Curr. Opin. Struct. Biol., 15, 302, 10.1016/j.sbi.2005.04.005

Holland, 1999, An examination of coaxial stacking of helical stems in a pseudoknot motif: the gene 32 messenger RNA pseudoknot of bacteriophage T2, RNA, 5, 257, 10.1017/S1355838299981360

Howard, 2005, Recoding elements located adjacent to a subset of eukaryal selenocysteine-specifying UGA codons, EMBO J., 24, 1596, 10.1038/sj.emboj.7600642

Howard, 2004, Efficient stimulation of site-specific ribosome frameshifting by antisense oligonucleotides, RNA, 10, 1653, 10.1261/rna.7810204

Jacks, 1988, Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region, Cell, 55, 447, 10.1016/0092-8674(88)90031-1

Jacks, 1987, Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus gag-related polyproteins, Proc. Natl. Acad. Sci. U.S.A., 84, 4298, 10.1073/pnas.84.12.4298

Jacks, 1985, Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting, Science, 230, 1237, 10.1126/science.2416054

Jenner, 2007, Messenger RNA conformations in the ribosomal E site revealed by X-ray crystallography, EMBO Rep., 8, 846, 10.1038/sj.embor.7401044

Jenner, 2005, Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome binding, Science, 308, 120, 10.1126/science.1105639

Jeruzalmi, 2002, Clamp loaders and sliding clamps, Curr. Opin. Struct. Biol., 12, 217, 10.1016/S0959-440X(02)00313-5

Joseph, 2003, After the ribosome structure: how does translocation work?, RNA, 9, 160, 10.1261/rna.2163103

Kieft, 2002, Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation, Nat. Struct. Biol., 9, 370

Kim, 2000, Mutational study reveals that tertiary interactions are conserved in ribosomal frameshifting pseudoknots of two luteoviruses, RNA, 6, 1157, 10.1017/S1355838200000510

Kim, 1999, Specific mutations in a viral RNA pseudoknot drastically change ribosomal frameshifting efficiency, Proc. Natl. Acad. Sci. U.S.A., 96, 14234, 10.1073/pnas.96.25.14234

Kolk, 1998, NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA, Science, 280, 434, 10.1126/science.280.5362.434

Kontos, 2001, Ribosomal pausing at a frameshifter RNA pseudoknot is sensitive to reading phase but shows little correlation with frameshift efficiency, Mol. Cell Biol., 21, 8657, 10.1128/MCB.21.24.8657-8670.2001

Korostelev, 2006, Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements, Cell, 126, 1065, 10.1016/j.cell.2006.08.032

Lee, 2007, The role of fluctuations in tRNA selection by the ribosome, Proc. Natl. Acad. Sci. U.S.A., 104, 13661, 10.1073/pnas.0705988104

Leger, 2007, The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed −1 ribosomal frameshift, Nucleic Acids Res., 35, 5581, 10.1093/nar/gkm578

Leger, 2004, A reassessment of the response of the bacterial ribosome to the frameshift stimulatory signal of the human immunodeficiency virus type 1, RNA, 10, 1225, 10.1261/rna.7670704

Li, 2006, Unusual mechanical stability of a minimal RNA kissing complex, Proc. Natl. Acad. Sci. U.S.A., 103, 15847, 10.1073/pnas.0607202103

Li, 2006, Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods, Biophys. J., 90, 250, 10.1529/biophysj.105.068049

Liphardt, 1999, Evidence for an RNA pseudoknot loop-helix interaction essential for efficient −1 ribosomal frameshifting, J. Mol. Biol., 288, 321, 10.1006/jmbi.1999.2689

Liphardt, 2001, Reversible unfolding of single RNA molecules by mechanical force, Science, 292, 733, 10.1126/science.1058498

Lopinski, 2000, Kinetics of ribosomal pausing during programmed −1 translational frameshifting, Mol. Cell Biol., 20, 1095, 10.1128/MCB.20.4.1095-1103.2000

Manktelow, 2005, Characterization of the frameshift signal of Edr, a mammalian example of programmed −1 ribosomal frameshifting, Nucleic Acids Res., 33, 1553, 10.1093/nar/gki299

Marcheschi, 2007, Programmed ribosomal frameshifting in SIV is induced by a highly structured RNA stem-loop, J. Mol. Biol., 373, 652, 10.1016/j.jmb.2007.08.033

McCallum, 2003, Refined solution structure of the iron-responsive element RNA using residual dipolar couplings, J. Mol. Biol., 326, 1037, 10.1016/S0022-2836(02)01431-6

McGarry, 2005, Destabilization of the P site codon–anticodon helix results from movement of tRNA into the P/E hybrid state within the ribosome, Mol. Cell, 20, 613, 10.1016/j.molcel.2005.10.007

Michiels, 2001, Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting, J. Mol. Biol., 310, 1109, 10.1006/jmbi.2001.4823

Moazed, 1989, Intermediate states in the movement of transfer RNA in the ribosome, Nature, 342, 142, 10.1038/342142a0

Moore, 2007, The tmRNA system for translational surveillance and ribosome rescue, Annu. Rev. Biochem., 76, 101, 10.1146/annurev.biochem.75.103004.142733

Munro, 2007, Identification of two distinct hybrid state intermediates on the ribosome, Mol. Cell, 25, 505, 10.1016/j.molcel.2007.01.022

Munro, 2008, A new view of protein synthesis: mapping the free energy landscape of the ribosome using single-molecule FRET, Biopolymers, 89, 565, 10.1002/bip.20961

Myong, 2007, Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase, Science, 317, 513, 10.1126/science.1144130

Namy, 2006, A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting, Nature, 441, 244, 10.1038/nature04735

Napthine, 1999, The role of RNA pseudoknot stem 1 length in the promotion of efficient −1 ribosomal frameshifting, J. Mol. Biol., 288, 305, 10.1006/jmbi.1999.2688

Nissen, 2001, RNA tertiary interactions in the large ribosomal subunit: the A-minor motif, Proc. Natl. Acad. Sci. U.S.A., 98, 4899, 10.1073/pnas.081082398

Nixon, 2002, Thermodynamic analysis of conserved loop–stem interactions in P1-P2 frameshifting RNA pseudoknots from plant Luteoviridae, Biochemistry, 41, 10665, 10.1021/bi025843c

Nixon, 2000, Energetics of a strongly pH dependent RNA tertiary structure in a frameshifting pseudoknot, J. Mol. Biol., 296, 659, 10.1006/jmbi.1999.3464

Nixon, 2002, Solution structure of a luteoviral P1–P2 frameshifting mRNA pseudoknot, J. Mol. Biol., 322, 621, 10.1016/S0022-2836(02)00779-9

Nonin-Lecomte, 2006, NMR structure of the Aquifex aeolicus tmRNA pseudoknot PK1: new insights into the recoding event of the ribosomal trans-translation, Nucleic Acids Res., 34, 1847, 10.1093/nar/gkl111

Olsthoorn, 2004, Novel application of sRNA: stimulation of ribosomal frameshifting, RNA, 10, 1702, 10.1261/rna.7139704

Onoa, 2003, Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme, Science, 299, 1892, 10.1126/science.1081338

Ottiger, 1998, Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra, J. Magn. Reson., 131, 373, 10.1006/jmre.1998.1361

Otto, 2004, The pathway of HCV IRES-mediated translation initiation, Cell, 119, 369, 10.1016/j.cell.2004.09.038

Pallan, 2005, Crystal structure of a luteoviral RNA pseudoknot and model for a minimal ribosomal frameshifting motif, Biochemistry, 44, 11315, 10.1021/bi051061i

Park, 2008, Identification of novel ligands for the RNA pseudoknot that regulate −1 ribosomal frameshifting, Bioorg. Med. Chem., 10.1016/j.bmc.2008.02.025

Parkin, 1992, Human immunodeficiency virus type 1 gag-pol frameshifting is dependent on downstream mRNA secondary structure: demonstration by expression in vivo, J. Virol., 66, 5147, 10.1128/JVI.66.8.5147-5151.1992

Paul, 2001, A sequence required for −1 ribosomal frameshifting located four kilobases downstream of the frameshift site, J. Mol. Biol., 310, 987, 10.1006/jmbi.2001.4801

Pfingsten, 2006, Structural basis for ribosome recruitment and manipulation by a viral IRES RNA, Science, 314, 1450, 10.1126/science.1133281

Pfingsten, 2007, Conservation and diversity among the three-dimensional folds of the Dicistroviridae intergenic region IRESes, J. Mol. Biol., 370, 856, 10.1016/j.jmb.2007.04.076

Plant, 2003, The 9-A solution: how mRNA pseudoknots promote efficient programmed −1 ribosomal frameshifting, RNA, 9, 168, 10.1261/rna.2132503

Plant, 2005, A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal, PLoS Biol., 3, e172, 10.1371/journal.pbio.0030172

Pleij, 1985, A new principle of RNA folding based on pseudoknotting, Nucleic Acids Res., 13, 1717, 10.1093/nar/13.5.1717

Rietveld, 1984, The three-dimensional folding of the tRNA-like structure of tobacco mosaic virus RNA. A new building principle applied twice, EMBO J., 3, 2613, 10.1002/j.1460-2075.1984.tb02182.x

Rietveld, 1983, Three-dimensional models of the tRNA-like 3′ termini of some plant viral RNAs, EMBO J., 2, 1079, 10.1002/j.1460-2075.1983.tb01549.x

Sadler, 2007, Structure and function of the protein kinase R, Curr. Top. Microbiol. Immunol., 316, 253

Schuwirth, 2005, Structures of the bacterial ribosome at 3.5Å resolution, Science, 310, 827, 10.1126/science.1117230

Selmer, 2006, Structure of the 70S ribosome complexed with mRNA and tRNA, Science, 313, 1935, 10.1126/science.1131127

Serganov, 2005, Structural basis for Diels-Alder ribozyme-catalyzed carbon–carbon bond formation, Nat. Struct. Mol. Biol., 12, 218, 10.1038/nsmb906

Sergiev, 2005, Function of the ribosomal E-site: a mutagenesis study, Nucleic Acids Res., 33, 6048, 10.1093/nar/gki910

Shen, 1995, The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus, J. Mol. Biol., 247, 963, 10.1006/jmbi.1995.0193

Spahn, 2001, Structure of the 80S ribosome from Saccharomyces cerevisiae—tRNA-ribosome and subunit–subunit interactions, Cell, 107, 373, 10.1016/S0092-8674(01)00539-6

Spiegel, 2007, Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosome, RNA, 13, 1473, 10.1261/rna.601507

Stahl, 2002, Ribosome structure: revisiting the connection between translational accuracy and unconventional decoding, Trends Biochem. Sci., 27, 178, 10.1016/S0968-0004(02)02064-9

Staple, 2005, Pseudoknots: RNA structures with diverse functions, PLoS Biol., 3, e213, 10.1371/journal.pbio.0030213

Staple, 2005, Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element, J. Mol. Biol., 349, 1011, 10.1016/j.jmb.2005.03.038

Studer, 2003, Rapid kinetic analysis of EF-G-dependent mRNA translocation in the ribosome, J. Mol. Biol., 327, 369, 10.1016/S0022-2836(03)00146-3

Su, 1999, Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot, Nat. Struct. Biol., 6, 285, 10.1038/6722

Takyar, 2005, mRNA helicase activity of the ribosome, Cell, 120, 49, 10.1016/j.cell.2004.11.042

ten Dam, 1994, Identification and analysis of the pseudoknot-containing gag-pro ribosomal frameshift signal of simian retrovirus-1, Nucleic Acids Res., 22, 2304, 10.1093/nar/22.12.2304

ten Dam, 1992, Structural and functional aspects of RNA pseudoknots, Biochemistry, 31, 11665, 10.1021/bi00162a001

ten Dam, 1995, Analysis of the role of the pseudoknot component in the SRV-1 gag-pro ribosomal frameshift signal: loop lengths and stability of the stem regions, RNA, 1, 146

Theimer, 2005, Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function, Mol. Cell, 17, 671, 10.1016/j.molcel.2005.01.017

Theimer, 1999, Equilibrium unfolding pathway of an H-type RNA pseudoknot which promotes programmed −1 ribosomal frameshifting, J. Mol. Biol., 289, 1283, 10.1006/jmbi.1999.2850

Theimer, 2000, Contribution of the intercalated adenosine at the helical junction to the stability of the gag-pro frameshifting pseudoknot from mouse mammary tumor virus, RNA, 6, 409, 10.1017/S1355838200992057

Tinoco, 2006, Determination of thermodynamics and kinetics of RNA reactions by force, Q Rev. Biophys., 39, 325, 10.1017/S0033583506004446

Torres-Larios, 2006, Structure of ribonuclease P—a universal ribozyme, Curr. Opin. Struct. Biol., 16, 327, 10.1016/j.sbi.2006.04.002

Tsuchihashi, 1990, Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme, Proc. Natl. Acad. Sci. U.S.A., 87, 2516, 10.1073/pnas.87.7.2516

Tu, 1992, Ribosomal movement impeded at a pseudoknot required for frameshifting, Proc. Natl. Acad. Sci. U.S.A., 89, 8636, 10.1073/pnas.89.18.8636

Valle, 2003, Locking and unlocking of ribosomal motions, Cell, 114, 123, 10.1016/S0092-8674(03)00476-8

Wakeman, 2007, Structural features of metabolite-sensing riboswitches, Trends Biochem. Sci., 32, 415, 10.1016/j.tibs.2007.08.005

Wen, 2008, Following translation by single ribosomes one codon at a time, Nature, 452, 598, 10.1038/nature06716

Wills, 2006, A functional −1 ribosomal frameshift signal in the human paraneoplastic Ma3 gene, J. Biol. Chem., 281, 7082, 10.1074/jbc.M511629200

Winkler, 2002, Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression, Nature, 419, 952, 10.1038/nature01145

Yusupov, 2001, Crystal structure of the ribosome at 5.5Å resolution, Science, 292, 883, 10.1126/science.1060089

Yusupova, 2006, Structural basis for messenger RNA movement on the ribosome, Nature, 444, 391, 10.1038/nature05281

Yusupova, 2001, The path of messenger RNA through the ribosome, Cell, 106, 233, 10.1016/S0092-8674(01)00435-4