Fragmentation of Aspergillus niger pellets in stirred tank bioreactors due to hydrodynamic stress

Chemical Engineering Research and Design - Tập 195 - Trang 116-131 - 2023
Philipp Waldherr1, Chrysoula Bliatsiou1, Lutz Böhm1, Matthias Kraume1
1Technische Universität Berlin, Fachgebiet Verfahrenstechnik, Ackerstraße 76, 13355 Berlin, Germany

Tài liệu tham khảo

Amanullah, 2000, Agitation induced mycelial fragmentation of Aspergillus oryzae and Penicillium chrysogenum, Biochem. Eng. J., 5, 109, 10.1016/S1369-703X(99)00059-5 Baldi, 2004, On the quantification of energy dissipation in the impeller stream of a stirred vessel from fluctuating velocity gradient measurements, Chem. Eng. Sci., 59, 2659, 10.1016/j.ces.2004.03.021 Barry, 2011, Microscopic characterisation of filamentous microbes: towards fully automated morphological quantification through image analysis, J. Microsc., 244, 1, 10.1111/j.1365-2818.2011.03506.x Bittins, 1994, Power and discharge numbers of radial-flow impellers. Fluid-dynamic interactions between impeller and baffles, Chem. Eng. Process.: Process.Intensif., 33, 295, 10.1016/0255-2701(94)01011-0 Bliatsiou, 2019, Influence of Impeller Geometry on Hydromechanical Stress in Stirred Liquid/Liquid Dispersions, Ind. Eng. Chem. Res., 58, 2537, 10.1021/acs.iecr.8b03654 Bliatsiou, 2020, Rheological characteristics of filamentous cultivation broths and suitable model fluids, Biochem. Eng. J., 163, 10.1016/j.bej.2020.107746 Böhm, 2019, Multiphase stirred tank bioreactors – new geometrical concepts and scale-up approaches., Chem. Ing. Tech., 91, 1724, 10.1002/cite.201900165 Buffo, 2020, Oxygen Transfer and Fragmentation of Aspergillus niger Pellets in Stirred Tank and Concentric-Duct Airlift Bioreactors, Ind. Biotechnol., 16, 67, 10.1089/ind.2020.29199.mmb Coroneo, 2011, CFD prediction of fluid flow and mixing in stirred tanks: Numerical issues about the RANS simulations, Comput. Chem. Eng., 35, 1959, 10.1016/j.compchemeng.2010.12.007 Cui, 1997, Effect of agitation intensities on fungal morphology of submerged fermentation, Biotechnol. Bioeng., 55, 715, 10.1002/(SICI)1097-0290(19970905)55:5<715::AID-BIT2>3.0.CO;2-E Davidson, 2003, Using computational fluid dynamics software to estimate circulation time distributions in bioreactors, Biotechnol. Prog., 19, 1480, 10.1021/bp025580d Dittmann, 2019, The influence of salt-enhanced cultivation on the micromechanical behaviour of filamentous pellets, Biochem. Eng. J., 148, 65, 10.1016/j.bej.2019.04.023 Driouch, 2012, Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles, Biotechnol. Bioeng., 109, 462, 10.1002/bit.23313 Driouch, 2010, Optimized bioprocess for production of fructofuranosidase by recombinant Aspergillus niger, Appl. Microbiol. Biotechnol., 87, 2011, 10.1007/s00253-010-2661-9 Driouch, 2010, Morphology engineering of Aspergillus niger for improved enzyme production, Biotechnol. Bioeng., 105, 1058, 10.1002/bit.22614 El Enshasy, 2006, Agitation effects on morphology and protein productive fractions of filamentous and pelleted growth forms of recombinant Aspergillus niger, Process Biochem., 41, 2103, 10.1016/j.procbio.2006.05.024 Etschmann, 2015, Improving 2-phenylethanol and 6-pentyl-α-pyrone production with fungi by microparticle-enhanced cultivation (MPEC), Yeast, 32, 145 Frisvad, 2011, Fumonisin and ochratoxin production in industrial Aspergillus niger strains, PloS One, 6, 10.1371/journal.pone.0023496 Frisvad, 2018, Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei, Appl. Microbiol. Biotechnol., 102, 9481, 10.1007/s00253-018-9354-1 Gabriele, 2009, Use of angle resolved PIV to estimate local specific energy dissipation rates for up- and down-pumping pitched blade agitators in a stirred tank, Chem. Eng. Sci., 64, 126, 10.1016/j.ces.2008.09.018 Geisler, 1994, Local turbulent shear stress in stirred vessels and its significant for different mixing tasks. Proc of 8th European Conf on Mixing, I Chem. E, 241 Ghobadi, 2016, Intensifying the Fermentation of Aspergillus oryzae in a Stirred Bioreactor Using Maxblend Impeller, Open Chem. Eng. J., 10, 88, 10.2174/1874123101610010088 Grenville, R.K., 2017. Characterizing impeller performance in stirred tanks with examples of process results [Presentation]. IChemE 2017. https://www.icheme.org/media/9459/richard-grenville.pdf. Grenville, 2017, Impeller Performance in Stirred Tanks: Characterizing mixer impellers on the basis of power, flow, shear and efficiency, Chem. Eng., 124, 42 Hardy, 2017, Advanced digital image analysis method dedicated to the characterization of the morphology of filamentous fungus, J. Microsc., 266, 126, 10.1111/jmi.12523 2000 Henzler, 1996, Modelluntersuchungen zur Partikelbeanspruchung in Reaktoren, Chem. Ing. Tech., 68, 1546, 10.1002/cite.330681205 Huchet, 2009, Evaluation of local kinetic energy dissipation rate in the impeller stream of a Rushton turbine by time-resolved PIV, Chem. Eng. Res. Des., 87, 369, 10.1016/j.cherd.2008.11.012 Hyde, 2019, The amazing potential of fungi: 50 ways we can exploit fungi industrially, Fungal Divers., 97, 1, 10.1007/s13225-019-00430-9 Jaworski, 1996, An LDA study of the turbulent flow field in a baffled vessel agitated by an axial, down-pumping hydrofoil impeller, Can. J. Chem. Eng., 74, 3, 10.1002/cjce.5450740103 Joshi, 2011, CFD simulation of stirred tanks: Comparison of turbulence models (Part II: Axial flow impellers, multiple impellers and multiphase dispersions, Can. J. Chem. Eng., 89, 754, 10.1002/cjce.20465 Joshi, 2011, CFD simulation of stirred tanks: Comparison of turbulence models. Part I: Radial flow impellers, Can. J. Chem. Eng., 89, 23, 10.1002/cjce.20446 Jüsten, 1996, Dependence of mycelial morphology on impeller type and agitation intensity, Biotechnol. Bioeng., 52, 672, 10.1002/(SICI)1097-0290(19961220)52:6<672::AID-BIT5>3.0.CO;2-L Kelly, 2006, Effects of fluid dynamic induced shear stress on fungal growth and morphology, Process Biochem., 41, 2113, 10.1016/j.procbio.2006.06.007 Kiep, 2011, Einfluss von Kultivierungsparametern auf die Morphologie und Produktbildung von Aspergillus niger Liauw, 2020, The Effect of Surface Hydrophobicity on the Attachment of Fungal Conidia to Substrates of Polyvinyl Acetate and Polyvinyl Alcohol, J. Polym. Environ., 28, 1450, 10.1007/s10924-020-01693-z Liepe, 1998 Lin, 2010, Effect of volumetric power input by aeration and agitation on pellet morphology and product formation of Aspergillus niger, Biochem. Eng. J., 49, 213, 10.1016/j.bej.2009.12.016 Meyer, 2020, Growing a circular economy with fungal biotechnology: A white paper, Fungal Biol. Biotechnol., 7, 5, 10.1186/s40694-020-00095-z Meyer, 2021, Understanding and controlling filamentous growth of fungal cell factories: Novel tools and opportunities for targeted morphology engineering, Fungal Biol. Biotechnol., 8, 8, 10.1186/s40694-021-00115-6 Meyer, 2015, The Cell Factory Aspergillus Enters the Big Data Era: Opportunities and Challenges for Optimising Product Formation, Adv. Biochem. Eng. /Biotechnol., 149, 91 Nienow, 1998, Hydrodynamics of stirred bioreactors, Appl. Mech. Rev., 51, 3, 10.1115/1.3098990 Nienow, 2006, Reactor engineering in large scale animal cell culture, Cytotechnology, 50, 9, 10.1007/s10616-006-9005-8 Nienow, 2021, The impact of fluid dynamic stress in stirred bioreactors – the scale of the biological entity: a personal view, Chem. Ing. Tech., 93, 17, 10.1002/cite.202000176 Pacek, 1999, The influence of impeller type on mean drop size and drop size distribution in an agitated vessel, Chem. Eng. Sci., 54, 4211, 10.1016/S0009-2509(99)00156-6 Panckow, 2022, Characterisation of particle stress in turbulent impeller flows utilising photo-optical measurements of a flocculation system – PART 1, Chem. Eng. Sci. Papagianni, 2006, Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology, Microb. Cell Factor., 5, 3, 10.1186/1475-2859-5-3 Papagianni, 1994, Morphology and citric acid production of Aspergillus niger PM 1, Biotechnol. Lett., 16, 929, 10.1007/BF00128627 Papagianni, 2002, Protease secretion in glucoamylase producer Aspergillus niger cultures: fungal morphology and inoculum effects, Process Biochem., 37, 1271, 10.1016/S0032-9592(02)00002-X 2004 Paul, 1999, Relationship between morphology and citric acid production in submerged Aspergillus niger fermentations, Biochem. Eng. J., 3, 121, 10.1016/S1369-703X(99)00012-1 Platzer, 1988, Modelling of the local distributions of velocity components and turbulence parameters in agitated vessels—method and results, Chem. Eng. Process.: Process. Intensif., 23, 13, 10.1016/0255-2701(88)87011-9 Rodríguez Porcel, 2005, Effects of pellet morphology on broth rheology in fermentations of Aspergillus terreus, Biochem. Eng. J., 26, 139, 10.1016/j.bej.2005.04.011 Shinnar, 1961, On the behaviour of liquid dispersions in mixing vessels, J. Fluid Mech., 10, 259, 10.1017/S0022112061000214 Shinnar, 1960, Statistical Theories of Turbulence in Predicting Particle Size in Agitated Dispersions, Ind. Eng. Chem., 52, 253, 10.1021/ie50603a036 Silva-Santisteban, 2005, Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus, Enzym. Microb. Technol., 36, 717, 10.1016/j.enzmictec.2004.12.008 Smith, 1990, The effect of agitation on the morphology and penicillin production of Penicillium chrysogenum, Biotechnol. Bioeng., 35, 1011, 10.1002/bit.260351009 Sperling, R. (Ed.), 2007. Turbulente Schubspannung und hydrodynamische Partikelbeanspruchung im Rührkessel. Proceedings of 10th Köthener Rührerkolloquium. van Leeuwen, 2013, Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles, Stud. Mycol., 74, 59, 10.3114/sim0009 Wille, 2001, The Influence of Macroscopic Elongational Flow on Dispersion Processes in Agitated Tanks, Chem. Eng. Technol., 24, 119, 10.1002/1521-4125(200102)24:2<119::AID-CEAT119>3.0.CO;2-G Wollny, S., 2010. Experimentelle und numerische Untersuchungen zur Partikelbeanspruchung in gerührten. Bio-)Reaktoren. Dissertation. Technische Universität Berlin. Wollny, 2007, Beanspruchung von Partikeln und Fluidelementen beim Rühren, Chem. Ing. Tech., 79, 1024, 10.1002/cite.200700060 Wongwicharn, 1999, Secretion of heterologous and native proteins, growth and morphology in batch cultures ofAspergillus niger B1-D at varying agitation rates, J. Chem. Technol. Biotechnol., 74, 821, 10.1002/(SICI)1097-4660(199908)74:8<821::AID-JCTB114>3.0.CO;2-# Wu, 1989, Laser-Doppler measurements of turbulent-flow parameters in a stirred mixer, Chem. Eng. Sci., 44, 2207, 10.1016/0009-2509(89)85155-3 Wucherpfennig, T., 2013. Cellular morphology: A novel process parameter for the cultivation of eukaryotic cells. Dissertation. Technische Universität Braunschweig. Wucherpfennig, 2011, Morphology engineering--osmolality and its effect on Aspergillus niger morphology and productivity, Microb. Cell Factor., 10, 58, 10.1186/1475-2859-10-58 Wucherpfennig, 2013, Comprehension of viscous morphology--evaluation of fractal and conventional parameters for rheological characterization of Aspergillus niger culture broth, J. Biotechnol., 163, 124, 10.1016/j.jbiotec.2012.08.027 Z. Li, 2004, Measurements of the fragmentation rate constant imply that the tensile strength of fungal hyphae can change significantly during growth., Biotechnol. Lett., 24, 1, 10.1023/A:1013848325193 Zhou, 1996, Impact of tank geometry on the maximum turbulence energy dissipation rate for impellers, AIChE J., 42, 2476, 10.1002/aic.690420908 Zuccaro, 2008, Tailor-made fructooligosaccharides by a combination of substrate and genetic engineering, Chembiochem: A Eur. J. Chem. Biol., 9, 143, 10.1002/cbic.200700486