Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Thiết kế chất ức chế dựa trên mảnh cho protease chính của SARS-CoV2
Tóm tắt
Bệnh COVID-19 do virus corona hội chứng hô hấp cấp tính nặng-2 (SARS-CoV2) gây ra đã dẫn đến tổn thất to lớn về sinh mạng trên toàn thế giới và vẫn tiếp tục như vậy. Nhiều nỗ lực đang được tiến hành để phát triển các chất ức chế có thể ngăn chặn bệnh thông qua việc chặn đứng virus trong chu trình sống của nó. Một trong những cách như vậy là nhằm vào protease chính của virus, một enzyme có vai trò quan trọng trong việc cắt và chuyển đổi polyprotein thành các đơn vị peptide chức năng. Trong nỗ lực này, chúng tôi đã cố gắng xác định các phân tử ức chế tiềm năng cho protease chính của SARS-CoV2 bằng phương pháp phát hiện thuốc dựa trên mảnh (FBDD), dựa trên cấu trúc tinh thể hiện có của chất ức chế dựa trên chromene (PDB_ID: 6M2N). Các phân tử được thiết kế đã được xác thực qua phương pháp docking phân tử và mô phỏng động lực học phân tử. Sự ổn định của các phức hợp đã được đánh giá thêm bằng cách tính toán năng lượng tự do gắn kết, phân tích chế độ bình thường, độ cứng cơ học và phân tích thành phần chính.
Từ khóa
#COVID-19 #SARS-CoV2 #protease chính #phát hiện thuốc dựa trên mảnh #docking phân tử #mô phỏng động lực họcTài liệu tham khảo
Carlos WG, Dela Cruz CS, Cao B, Pasnick S, Jamil S (2020) Novel Wuhan (2019-nCoV) coronavirus. Am J Respir Crit Care Med P7–P8
Drosten C, Günther S, Preiser W, Van Der Werf S, Brodt HR, Becker S, Doerr HW (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348(20):1967–1976
Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820
Kaye HS, Marsh HB, Dowdle WR (1971) Seroepidemiologic survey of coronavirus (strain OC 43) related infections in a children’s population. Am J Epidemiol 94(1):43–49
Hendley JO, Fishburne HB, Gwaltney JM Jr (1972) Coronavirus infections in working adults: eight-year study with 229 E and OC 43. Am Rev Respir Dis 105(5):805–811
McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM (1967) Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA 57(4):933
Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Yuen KY (2005) Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79(2):884–895
Van Der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC, Berkhout B (2004) Identification of a new human coronavirus. Nat Med 10(4):368–373
Fouchier RA, Hartwig NG, Bestebroer TM, Niemeyer B, De Jong JC, Simon JH, Osterhaus AD (2004) A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci 101(16):6212–6216
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Zhang Q (2020) Coronavirus infections and immune responses. J Med Virol 92(4):424–432
Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Hilgenfeld R (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368(6489):409–412
Gorbalenya AE, Baker SC, Baric R, Groot RJD, Drosten C, Gulyaeva AA, Ziebuhr J (2020) Severe acute respiratory syndrome-related coronavirus: the species and its viruses–a statement of the Coronavirus Study Group
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, Tummino TA (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 1–13
Li YC, Bai WZ, Hashikawa T (2020) The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 92(6):552–555
Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Zhou Y (2020) Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis 94:91–95
Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IA, Gupta RK (2021) SARS-CoV-2 B. 1.617. 2 Delta variant replication and immune evasion. Nature 599(7883):114–119
Karim SSA, Karim QA (2021) Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet 398(10317):2126–2128
Ton AT, Gentile F, Hsing M, Ban F, Cherkasov A (2020) Rapid identification of potential inhibitors of SARS‐CoV‐2 main protease by deep docking of 1.3 billion compounds. Mol Inf
Borgio JF, Alsuwat HS, Al Otaibi WM, Ibrahim AM, Almandil NB, Al Asoom LI, AbdulAzeez S (2020) State-of-the-art tools unveil potent drug targets amongst clinically approved drugs to inhibit helicase in SARS-CoV-2. Arch Med Sci 16(3):508
Beck BR, Shin B, Choi Y, Park S, Kang K (2020) Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput Struct Biotechnol J
Ullrich S, Nitsche C (2020) The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett 127377
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Yang H (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582(7811):289–293
Nimgampalle M, Devanathan V, Saxena A (2020) Screening of chloroquine, hydroxychloroquine and its derivatives for their binding affinity to multiple SARS-CoV-2 protein drug targets. J Biomol Struct Dyn 1–13
Cherrak SA, Merzouk H, Mokhtari-Soulimane N (2020) Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: a molecular docking and simulation studies. PLoS ONE 15(10):e0240653
Singh R, Gautam A, Chandel S, Ghosh A, Dey D, Roy S, Ghosh D (2020) Protease inhibitory effect of natural polyphenolic compounds on SARS-CoV-2: an in silico study. Molecules 25(20):4604
Khan SA, Zia K, Ashraf S, Uddin R, Ul-Haq Z (2020) Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. J Biomol Struct Dyn 1–10
Shaffer L (2020) 15 drugs being tested to treat COVID-19 and how they would work. Nat Med
Kumar N, Awasthi A, Kumari A, Sood D, Jain P, Singh T, Chandra R (2022) Antitussive noscapine and antiviral drug conjugates as arsenal against COVID-19: a comprehensive chemoinformatics analysis. J Biomol Struct Dyn 40(1):101–116
Dai W, Zhang B, Jiang XM, Su H, Li J, Zhao Y, Liu H (2020) Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368(6497):1331–1335
Jin Z, Zhao Y, Sun Y, Zhang B, Wang H, Wu Y, Rao Z (2020) Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat Struct Mol Biol 27(6):529–532
Durgam L, Guruprasad L (2022) Computational studies on the design of NCI natural products as inhibitors to SARS-CoV-2 main protease. J Biomol Struct Dyn (Accepted)
Kumar A, Voet A, Zhang KYJ (2012) Fragment based drug design: from experimental to computational approaches. Curr Med Chem 19(30):5128–5147
Congreve M, Carr R, Murray C, Jhoti H (2003) A‘rule of three’for fragment-based lead discovery? Drug Discovery Today 8(19):876–877
Jhoti H, Williams G, Rees DC, Murray CW (2013) The‘rule of three’for fragment-based drug discovery: where are we now? Nat Rev Drug Discovery 12(8):644–644
Brown N (2015) In silico medicinal chemistry: computational methods to support drug design. Royal Society of Chemistry
de Souza Neto LR, Moreira-Filho JT, Neves BJ, Maidana RLBR, Guimarães ACR, Furnham N, Silva FP Jr (2020) In silico strategies to support fragment-to-lead optimization in drug discovery. Front Chem 8:93
Murray CW, Newell DR, Angibaud P (2019) A successful collaboration between academia, biotech and pharma led to discovery of erdafitinib, a selective FGFR inhibitor recently approved by the FDA. MedChemComm 10(9):1509–1511
Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P (2012) Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discovery 11(11):873–886
Lamb YN (2019) Pexidartinib: first approval. Drugs 79(16):1805–1812
Erlanson DA, de Esch IJ, Jahnke W, Johnson CN, Mortenson PN (2020) Fragment-to-lead medicinal chemistry publications in 2018. J Med Chem 63(9):4430–4444
Baker M (2013) Fragment-based lead discovery grows up: with multiple drug candidates in the clinic that originated from fragment-based lead discovery, the approach of starting small has become big. Nat Rev Drug Discovery 12(1):5–8
Denis JDS, Hall RJ, Murray CW, Heightman TD, Rees DC (2021) Fragment-based drug discovery: opportunities for organic synthesis. RSC Medicinal Chemistry 12(3):321–329
Su HX, Yao S, Zhao WF, Li MJ, Liu J, Shang WJ, Xu YC (2020) Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol Sin 41(9):1167–1177
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612
Hao GF, Jiang W, Ye YN, Wu FX, Zhu XL, Guo FB, Yang GF (2016) ACFIS: a web server for fragment-based drug discovery. Nucleic Acids Res 44(W1):W550–W556
Yang JF, Wang F, Jiang W, Zhou GY, Li CZ, Zhu XL, Yang GF (2018) PADFrag: a database built for the exploration of bioactive fragment space for drug discovery. J Chem Inf Model 58(9):1725–1730
Kolb P, Caflisch A (2006) Automatic and efficient decomposition of two-dimensional structures of small molecules for fragment-based high-throughput docking. J Med Chem 49:7384–7392
Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. In Chem Biol (pp. 243–250). Humana Press, New York, NY
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791
Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):1–13
Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725
Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260
Sousa da Silva AW, Vranken WF (2012) ACPYPE-antechamber python parser interface. BMC Res Notes 5(1):1–8
Berendsen HJ, Postma JP, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In Intermolecular forces (pp. 331–342). Springer, Dordrecht
Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101
Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190
Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092
Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472
Kumari R, Kumar R, Open Source Drug Discovery Consortium & Lynn A (2014) g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962
Aqvist J, Marelius J (2001) The linear interaction energy method for predicting ligand binding free energies. Comb Chem High Throughput Screening 4(8):613–626
Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897
Gilson MK, Honig B (1988) Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins 4(1):7–18
Almlöf M, Brandsdal BO, Åqvist J (2004) Binding affinity prediction with different force fields: examination of the linear interaction energy method. J Comput Chem 25(10):1242–1254
Carlson HA, Jorgensen WL (1995) An extended linear response method for determining free energies of hydration. J Phys Chem 99(26):10667–10673
Loida PJ (1994) Molecular specificity of substrate recognition and activation in cytochrome P-450 (CAM). Doctoral dissertation, University of Illinois at Urbana-Champaign
Bakan A, Meireles LM, Bahar I (2011) ProDy: protein dynamics inferred from theory and experiments. Bioinformatics 27(11):1575–1577
Bakan A, Bahar I (2009) The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proc Natl Acad Sci 106(34):14349–14354
Yang L, Song G, Carriquiry A, Jernigan RL (2008) Close correspondence between the motions from principal component analysis of multiple HIV-1 protease structures and elastic network modes. Structure 16(2):321–330
Eyal E, Yang LW, Bahar I (2006) Anisotropic network model: systematic evaluation and a new web interface. Bioinformatics 22(21):2619–2627
Maisuradze GG, Liwo A, Scheraga HA (2009) Principal component analysis for protein folding dynamics. J Mol Biol 385(1):312–329
Ross C, Nizami B, Glenister M, Sheik Amamuddy O, Atilgan AR, Atilgan C, Tastan Bishop Ö (2018) MODE-TASK: large-scale protein motion tools. Bioinformatics 34(21):3759–3763
Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43(20):3714–3717
Daina A, Michielin O, Zoete V (2014) iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model 54(12):3284–3301
Potts RO, Guy RH (1992) Predicting skin permeability. Pharm Res 9(5):663–669