Fragment-based exploration of the 14-3-3/Amot-p130 interface

Current Research in Structural Biology - Tập 4 - Trang 21-28 - 2022
Federica Centorrino1, Blaž Andlovic1, Peter Cossar1, Luc Brunsveld1, Christian Ottmann1
1Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, the Netherlands

Tài liệu tham khảo

Adams, 2010, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. Sect. D Biol. Crystallogr., 66, 213, 10.1107/S0907444909052925 Adler, 2013, Serum deprivation inhibits the transcriptional Co-activator YAP and cell growth via phosphorylation of the 130-KDa isoform of Angiomotin by the LATS1/2 protein kinases, Proc. Natl. Acad. Sci. U. S. A, 110, 17368, 10.1073/pnas.1308236110 Adler, 2013, Amot130 adapts Atrophin-1 interacting protein 4 to inhibit yes-associated protein signaling and cell growth, J. Biol. Chem., 288, 15181, 10.1074/jbc.M112.446534 Anders, 2013, A semisynthetic fusicoccane stabilizes a protein-protein interaction and enhances the expression of K+ channels at the cell surface, Chem. Biol., 20, 583, 10.1016/j.chembiol.2013.03.015 Andrei, 2017, Stabilization of protein-protein interactions in drug discovery, Expet Opin. Drug Discov., 12, 925, 10.1080/17460441.2017.1346608 Andrei, 2018, Rationally designed semisynthetic natural product analogues for stabilization of 14 -3-3Protein –ProteinInteractions, Angew. Chem. Int. Ed., 57, 13470, 10.1002/anie.201806584 Arkin, 2004, Small-molecule inhibitors of protein–protein interactions: progressing towards the dream, Nat. Rev. Drug Discov., 3, 301, 10.1038/nrd1343 Ballone, 2018, 14-3-3: a case study in PPI modulation, Molecules, 23, 1386, 10.3390/molecules23061386 Ballone, 2018, Structural characterization of 14-3-3ζ in complex with the human Son of Sevenless Homolog 1 (SOS1), J. Struct. Biol., 202, 210, 10.1016/j.jsb.2018.01.011 Bartel, 2014, Small molecules, peptides and natural products: getting a grip on 14-3-3 protein-protein modulation, Future Med. Chem., 6, 903, 10.4155/fmc.14.47 Bier, 2016, Small-molecule stabilization of the 14-3-3/Gab2 protein–protein interaction (PPI) interface, ChemMedChem, 11, 911, 10.1002/cmdc.201500484 Bissantz, 2010, Medicinal chemist's guide to molecular interactions, J. Med. Chem., 53, 5061, 10.1021/jm100112j Bratt, 2002, Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains, Gene, 298, 69, 10.1016/S0378-1119(02)00928-9 Bratt, 2005, Angiomotin regulates endothelial cell-cell junctions and cell motility, J. Biol. Chem., 280, 34859, 10.1074/jbc.M503915200 Brown, 2018, Approaches to target tractability assessment – a practical perspective, Med. Chem. Commun., 9, 606, 10.1039/C7MD00633K Centorrino, 2018, Biophysical and structural insight into the USP8/14-3-3 interaction, FEBS Lett., 592, 1211, 10.1002/1873-3468.13017 DeLano, 2002, Pymol: an open-source molecular graphics tool, 40, 82 Emsley, 2004, Coot: model-building tools for molecular graphics, Acta Crystallogr. Sect. D Biol. Crystallogr., 60, 2126, 10.1107/S0907444904019158 Ernkvist, 2006, P130-Angiomotin associates to actin and controls endothelial cell shape, FEBS J., 273, 2000, 10.1111/j.1742-4658.2006.05216.x Gogl, 2021, Hierarchized phosphotarget binding by the seven human 14-3-3 isoforms, Nat. Commun., 12, 1677, 10.1038/s41467-021-21908-8 Guillory, 2020, Fragment-based differential targeting of PPI stabilizer interfaces, J. Med. Chem., 63, 6694, 10.1021/acs.jmedchem.9b01942 Huang, 2018, The physiological role of Motin family and its dysregulation in tumorigenesis, J. Transl. Med., 16, 98, 10.1186/s12967-018-1466-y Hughes, 2017, Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders, Essays Biochem., 61, 505, 10.1042/EBC20170041 Humphrey, 1996, VMD: visual molecular dynamics, J. Mol. Graph., 14, 33, 10.1016/0263-7855(96)00018-5 Johnson, 2010, Bioinformatic and experimental survey of 14-3-3-binding sites, Biochem. J., 427, 69, 10.1042/BJ20091834 Kanai, 2000, TAZ: a novel transcriptional Co-activator regulated by interactions with 14-3-3 and PDZ domain proteins, EMBO J., 19, 6778, 10.1093/emboj/19.24.6778 Kilisch, 2016, Dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1, J. Cell Sci., 129, 831 Leach, 2011, Molecular complexity and fragment-based drug discovery: ten years on, Curr. Opin. Chem. Biol., 15, 489, 10.1016/j.cbpa.2011.05.008 Lentini Santo, 2020, Stabilization of protein-protein interactions between CaMKK2 and 14-3-3 by fusicoccins, ACS Chem. Biol., 15, 3060, 10.1021/acschembio.0c00821 Leysen, 2021, Structural insights into the cytoplasmic chaperone effect of 14-3-3 proteins on Ataxin-1, J. Mol. Biol., 433, 10.1016/j.jmb.2021.167174 Lv, 2017, Angiomotin family members: oncogenes or tumor suppressors?, Int. J. Biol. Sci., 13, 772, 10.7150/ijbs.19603 Mabonga, 2019, Protein-protein interaction modulators: advances, successes and remaining challenges, Biophys. Rev., 11, 559, 10.1007/s12551-019-00570-x McCoy, 2007, Phaser crystallographic software, J. Appl. Crystallogr., 40, 658, 10.1107/S0021889807021206 Milroy, 2014, Modulators of protein–protein interactions, Chem. Rev., 114, 4695, 10.1021/cr400698c Moleirinho, 2017, Regulation of localization and function of the transcriptional Co-activator YAP by Angiomotin, Elife, 6, 10.7554/eLife.23966 Platzer, 2020, PI by NMR: probing CH–π interactions in protein–ligand complexes by NMR spectroscopy, Angew. Chem. Int. Ed., 59, 14861, 10.1002/anie.202003732 Rainard, 2018, Using microscale Thermophoresis to characterize hits from high-throughput screening: a European lead factory perspective, SLAS Discov., 23, 225, 10.1177/2472555217744728 Salonen, 2011, Aromatic rings in chemical and biological recognition: energetics and structures, Angew. Chem. Int. Ed., 50, 4808, 10.1002/anie.201007560 Schreiber, 2021, The rise of molecular glues, Cell, 184, 3, 10.1016/j.cell.2020.12.020 Scott, 2016, Small molecules, big targets: drug discovery faces the protein–protein interaction challenge, Nat. Rev. Drug Discov., 15, 533, 10.1038/nrd.2016.29 Souers, 2013, ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets, Nat. Med., 19, 202, 10.1038/nm.3048 Stevers, 2016, Characterization and small-molecule stabilization of the multisite Tandem binding between 14-3-3 and the R domain of CFTR, Proc. Natl. Acad. Sci. U. S. A, 113, E1152, 10.1073/pnas.1516631113 Troyanovsky, 2001, Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation, J. Cell Biol., 152, 1247, 10.1083/jcb.152.6.1247 Valenti, 2019, Clinical candidates modulating protein-protein interactions: the fragment-based experience, Eur. J. Med. Chem., 167, 76, 10.1016/j.ejmech.2019.01.084 Vidal, 2011, Interactome networks and human disease, Cell, 144, 986, 10.1016/j.cell.2011.02.016 Webb, 2011, Structural features and ligand binding properties of Tandem WW domains from YAP and TAZ, nuclear effectors of the Hippo pathway, Biochemistry, 50, 3300, 10.1021/bi2001888 Winter, 2018, DIALS: implementation and evaluation of a new integration package, Acta Crystallogr. D Struct. Biol., 74, 85, 10.1107/S2059798317017235 Wolter, 2020, Selectivity via cooperativity: preferential stabilization of the P65/14-3-3 interaction with semisynthetic natural products, J. Am. Chem. Soc., 142, 11772, 10.1021/jacs.0c02151 Würtele, 2003, Structural view of a fungal toxin acting on a 14-3-3 regulatory complex, EMBO J., 22, 987, 10.1093/emboj/cdg104 Yu, 2015, Hippo pathway in organ size control, tissue homeostasis, and cancer, Cell, 163, 811, 10.1016/j.cell.2015.10.044 Zhao, 2007, Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control, Genes Dev., 21, 2747, 10.1101/gad.1602907 Zhao, 2011, Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein, Genes Dev., 25, 51, 10.1101/gad.2000111