Fracture toughness enhancement of yttria-stabilized tetragonal zirconia polycrystalline ceramics through magnesia-partially stabilized zirconia addition
Tài liệu tham khảo
Chevalier, 2009, Ceramics for medical applications: a picture for the next 20 years, J. Eur. Ceram. Soc., 29, 1245, 10.1016/j.jeurceramsoc.2008.08.025
Basu, 2005, Toughening of yttria-stabilised tetragonal zirconia ceramics, Int. Mater. Rev., 50, 239, 10.1179/174328005X41113
Yurdakul, 2019, One-step hydrothermal synthesis of yttria-stabilized tetragonal zirconia polycrystalline nanopowders for blue-colored zirconia-cobalt aluminate spinel composite ceramics, Ceram. Int., 45, 5398, 10.1016/j.ceramint.2018.11.240
Nettleship, 1987, Tetragonal zirconia polycrystal (TZP)-a review, Int. J. High Technol. Ceram., 3, 1, 10.1016/0267-3762(87)90060-9
Hannink, 2000, Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 83, 461, 10.1111/j.1151-2916.2000.tb01221.x
Swab, 1991, Low temperature degradation of Y-TZP materials, J. Mater. Sci., 26, 6706, 10.1007/BF02402664
Porter, 1979, Microstructural development in MgO-partially stabilized zirconia (Mg-PSZ), J. Am. Ceram. Soc., 62, 298, 10.1111/j.1151-2916.1979.tb09484.x
Chaparro, 2007, Elucidating of the microstructure of ZrO2 ceramics with additions of 1200°C heat treated ultrafine MgO powders: aging at 1420°C, Mater. Chem. Phys., 106, 45, 10.1016/j.matchemphys.2007.05.024
Govila, 1991, Strength characterization of MgO-partially stabilized zirconia, J. Mater. Sci., 26, 1545, 10.1007/BF00544663
Jiang, 2016, Effect of sintering temperature on mechanical properties of magnesia partially stabilized zirconia refractory, Ceram. Int., 42, 10593, 10.1016/j.ceramint.2016.03.136
Chieko, 2011, Influence of Y2O3 addition on the microstructure and mechanical properties of Mg-PSZ ceramics, J. Mater. Sci. Eng., 1, 556
Kubota, 1994, Influence of temperature on elastic modulus and strength of MgO-partially stabilized zirconia (Mg-PSZ), J. Ceram. Soc. Jpn., 102, 708, 10.2109/jcersj.102.708
Hannink, 1994, Progress in transformation toughening of ceramics, Annu. Rev. Mater. Sci., 24, 359, 10.1146/annurev.ms.24.080194.002043
Garvie, 1984, Biocompatibility of magnesia-partially stabilized zirconia (Mg-PSZ) ceramics, J. Mater. Sci., 19, 3224, 10.1007/BF00549808
Trunec, 2009, Higher fracture toughness of tetragonal zirconia ceramics through nanocrystalline structure, Scripta Mater., 61, 56, 10.1016/j.scriptamat.2009.03.019
Zou, 2019, Tougher zirconia nanoceramics with less yttria, Adv. Appl. Ceram., 118, 9, 10.1080/17436753.2018.1445464
Jing, 2019, High-fracture toughness and aging-resistance of 3Y-TZP ceramics with a low Al2O3 content for dental applications, Ceram. Int., 45, 6066, 10.1016/j.ceramint.2018.12.078
Wu, 2015, Toughening effect of multiwall carbon nanotubes on 3Y-TZP zirconia ceramics at cryogenic temperatures, Ceram. Int., 41, 1303, 10.1016/j.ceramint.2014.09.061
Shuang, 2017, Enhanced toughness of zirconia ceramics with graphene platelets consolidated by spark plasma sintering, Int. J. Appl. Ceram. Technol., 14, 1062, 10.1111/ijac.12742
Borrell, 2012, Improvement of microstructural properties of 3Y-TZP materials by conventional and non-conventional sintering techniques, Ceram. Int., 38, 39, 10.1016/j.ceramint.2011.06.035
Rezaee, 2020, Characterization and strengthening of porous alumina-20 wt% zirconia ceramic composites, Ceram. Int., 46, 893, 10.1016/j.ceramint.2019.09.047
Gibson, 2012
Ting, 2017, Low-temperature sintering and prolonged holding time on the densification and properties of zirconia ceramic, J. Ceram. Process. Res., 18, 569
Nightingale, 1993
Toraya, 1984, Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction, J. Am. Ceram. Soc., 67, C-119
Zhang, 2017, The effect of microstructure control on mechanical properties of 12Ce-TZP via two-step sintering method, J. Alloys Compd., 711, 686, 10.1016/j.jallcom.2017.04.059
Niihara, 1982, Evaluation of Kıc of brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Lett., 1, 13, 10.1007/BF00724706
Niihara, 1983
Cottom, 1996, Fracture toughness of nanocrystalline ZrO2-3mol% Y2O3 determined by Vickers indentation, Scripta Mater., 34, 809, 10.1016/1359-6462(95)00587-0
Kaliszewski, 1994, Indentation studies on Y2O2-stabilized ZrO2: I, Development of indentation-induced cracks, J. Am. Ceram. Soc., 77, 1185, 10.1111/j.1151-2916.1994.tb05391.x
Pabst, 2004, Effective elastic properites of alumina-zirconia composite ceramics-Part 3. Calculation of elastic moduli of polycrystalline alumina and zirconia from monocrystal data, Ceram. Silik., 48, 41
Chevalier, 2009, The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends, J. Am. Ceram. Soc., 92, 1901, 10.1111/j.1551-2916.2009.03278.x
Rector, 2019, The powder diffraction file: a quality materials characterization database, Powder Diffr., 34, 352, 10.1017/S0885715619000812
Grain, 1967, Phase relations in the ZrO2-MgO system, J. Am. Ceram. Soc., 50, 288, 10.1111/j.1151-2916.1967.tb15111.x
Pascual, 1983, Subsolidus phase equilibria and ordering in the system ZrO2-Y2O3, J. Am. Ceram. Soc., 66, 23, 10.1111/j.1151-2916.1983.tb09961.x
Galusek, 1999, The influence of cold isostatic pressing on compaction and properties of Mg-PSZ ceramics, J. Mater. Sci. Lett., 18, 1347, 10.1023/A:1006690500585
Hall, 1951, The deformation and ageing of mild steel. 3: discussion of results, Proc. Phys. Soc. B, 64, 747, 10.1088/0370-1301/64/9/303
Petch, 1953, The cleavage strength of polycrystals, J. Iron. Steel Inst., 174, 25