Fracture toughness enhancement of yttria-stabilized tetragonal zirconia polycrystalline ceramics through magnesia-partially stabilized zirconia addition

Bilal Soylemez1, Ercan Sener1, Arife Yurdakul1,2, Hilmi Yurdakul1,3
1Department of Metallurgical and Materials Engineering, Alanya Alaaddin Keykubat University, Alanya-Antalya, Turkey
2Department of Hand Arts, Kutahya Vocational School of Fine Arts, Kutahya Dumlupinar University, Kutahya, Turkey
3Department of Mechanical Engineering, Kutahya Dumlupinar University, Kutahya, Turkey

Tài liệu tham khảo

Chevalier, 2009, Ceramics for medical applications: a picture for the next 20 years, J. Eur. Ceram. Soc., 29, 1245, 10.1016/j.jeurceramsoc.2008.08.025 Basu, 2005, Toughening of yttria-stabilised tetragonal zirconia ceramics, Int. Mater. Rev., 50, 239, 10.1179/174328005X41113 Yurdakul, 2019, One-step hydrothermal synthesis of yttria-stabilized tetragonal zirconia polycrystalline nanopowders for blue-colored zirconia-cobalt aluminate spinel composite ceramics, Ceram. Int., 45, 5398, 10.1016/j.ceramint.2018.11.240 Nettleship, 1987, Tetragonal zirconia polycrystal (TZP)-a review, Int. J. High Technol. Ceram., 3, 1, 10.1016/0267-3762(87)90060-9 Hannink, 2000, Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 83, 461, 10.1111/j.1151-2916.2000.tb01221.x Swab, 1991, Low temperature degradation of Y-TZP materials, J. Mater. Sci., 26, 6706, 10.1007/BF02402664 Porter, 1979, Microstructural development in MgO-partially stabilized zirconia (Mg-PSZ), J. Am. Ceram. Soc., 62, 298, 10.1111/j.1151-2916.1979.tb09484.x Chaparro, 2007, Elucidating of the microstructure of ZrO2 ceramics with additions of 1200°C heat treated ultrafine MgO powders: aging at 1420°C, Mater. Chem. Phys., 106, 45, 10.1016/j.matchemphys.2007.05.024 Govila, 1991, Strength characterization of MgO-partially stabilized zirconia, J. Mater. Sci., 26, 1545, 10.1007/BF00544663 Jiang, 2016, Effect of sintering temperature on mechanical properties of magnesia partially stabilized zirconia refractory, Ceram. Int., 42, 10593, 10.1016/j.ceramint.2016.03.136 Chieko, 2011, Influence of Y2O3 addition on the microstructure and mechanical properties of Mg-PSZ ceramics, J. Mater. Sci. Eng., 1, 556 Kubota, 1994, Influence of temperature on elastic modulus and strength of MgO-partially stabilized zirconia (Mg-PSZ), J. Ceram. Soc. Jpn., 102, 708, 10.2109/jcersj.102.708 Hannink, 1994, Progress in transformation toughening of ceramics, Annu. Rev. Mater. Sci., 24, 359, 10.1146/annurev.ms.24.080194.002043 Garvie, 1984, Biocompatibility of magnesia-partially stabilized zirconia (Mg-PSZ) ceramics, J. Mater. Sci., 19, 3224, 10.1007/BF00549808 Trunec, 2009, Higher fracture toughness of tetragonal zirconia ceramics through nanocrystalline structure, Scripta Mater., 61, 56, 10.1016/j.scriptamat.2009.03.019 Zou, 2019, Tougher zirconia nanoceramics with less yttria, Adv. Appl. Ceram., 118, 9, 10.1080/17436753.2018.1445464 Jing, 2019, High-fracture toughness and aging-resistance of 3Y-TZP ceramics with a low Al2O3 content for dental applications, Ceram. Int., 45, 6066, 10.1016/j.ceramint.2018.12.078 Wu, 2015, Toughening effect of multiwall carbon nanotubes on 3Y-TZP zirconia ceramics at cryogenic temperatures, Ceram. Int., 41, 1303, 10.1016/j.ceramint.2014.09.061 Shuang, 2017, Enhanced toughness of zirconia ceramics with graphene platelets consolidated by spark plasma sintering, Int. J. Appl. Ceram. Technol., 14, 1062, 10.1111/ijac.12742 Borrell, 2012, Improvement of microstructural properties of 3Y-TZP materials by conventional and non-conventional sintering techniques, Ceram. Int., 38, 39, 10.1016/j.ceramint.2011.06.035 Rezaee, 2020, Characterization and strengthening of porous alumina-20 wt% zirconia ceramic composites, Ceram. Int., 46, 893, 10.1016/j.ceramint.2019.09.047 Gibson, 2012 Ting, 2017, Low-temperature sintering and prolonged holding time on the densification and properties of zirconia ceramic, J. Ceram. Process. Res., 18, 569 Nightingale, 1993 Toraya, 1984, Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction, J. Am. Ceram. Soc., 67, C-119 Zhang, 2017, The effect of microstructure control on mechanical properties of 12Ce-TZP via two-step sintering method, J. Alloys Compd., 711, 686, 10.1016/j.jallcom.2017.04.059 Niihara, 1982, Evaluation of Kıc of brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Lett., 1, 13, 10.1007/BF00724706 Niihara, 1983 Cottom, 1996, Fracture toughness of nanocrystalline ZrO2-3mol% Y2O3 determined by Vickers indentation, Scripta Mater., 34, 809, 10.1016/1359-6462(95)00587-0 Kaliszewski, 1994, Indentation studies on Y2O2-stabilized ZrO2: I, Development of indentation-induced cracks, J. Am. Ceram. Soc., 77, 1185, 10.1111/j.1151-2916.1994.tb05391.x Pabst, 2004, Effective elastic properites of alumina-zirconia composite ceramics-Part 3. Calculation of elastic moduli of polycrystalline alumina and zirconia from monocrystal data, Ceram. Silik., 48, 41 Chevalier, 2009, The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends, J. Am. Ceram. Soc., 92, 1901, 10.1111/j.1551-2916.2009.03278.x Rector, 2019, The powder diffraction file: a quality materials characterization database, Powder Diffr., 34, 352, 10.1017/S0885715619000812 Grain, 1967, Phase relations in the ZrO2-MgO system, J. Am. Ceram. Soc., 50, 288, 10.1111/j.1151-2916.1967.tb15111.x Pascual, 1983, Subsolidus phase equilibria and ordering in the system ZrO2-Y2O3, J. Am. Ceram. Soc., 66, 23, 10.1111/j.1151-2916.1983.tb09961.x Galusek, 1999, The influence of cold isostatic pressing on compaction and properties of Mg-PSZ ceramics, J. Mater. Sci. Lett., 18, 1347, 10.1023/A:1006690500585 Hall, 1951, The deformation and ageing of mild steel. 3: discussion of results, Proc. Phys. Soc. B, 64, 747, 10.1088/0370-1301/64/9/303 Petch, 1953, The cleavage strength of polycrystals, J. Iron. Steel Inst., 174, 25