Fracture behavior of hybrid epoxy nanocomposites based on multi-walled carbon nanotube and core-shell rubber

Nano Materials Science - Tập 4 - Trang 251-258 - 2022
Zewen Zhu1, Hengxi Chen1, Qihui Chen2, Cong Liu3, Kwanghae Noh1, Haiqing Yao1, Masaya Kotaki4, Hung-Jue Sue1
1Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
2School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
3Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
4Kaneka US Materials Research Center, Fremont, CA, 94555, USA

Tài liệu tham khảo

Auvergne, 2014, Biobased thermosetting epoxy: present and future, Chem. Rev., 114, 1082, 10.1021/cr3001274 Breuer, 2016 Sue, 2004, Fracture behavior of α-zirconium phosphate-based epoxy nanocomposites, Acta Mater., 52, 2239, 10.1016/j.actamat.2004.01.015 Liu, 2010, Toughening of epoxies with block copolymer micelles of wormlike morphology, Macromolecules, 43, 7238, 10.1021/ma902471g Liu, 2019, Mechanical behavior of self-curing epoxy nanocomposites, Polymer, 179, 10.1016/j.polymer.2019.121631 Pearson, 1993, Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly (phenylene oxide), Polymer, 34, 3658, 10.1016/0032-3861(93)90051-B Haghi, 2013 Vijayan P, 2017, Elastomer/thermoplastic modified epoxy nanocomposites: the hybrid effect of ‘micro’ and ‘nano’ scale, Mater. Sci. Eng. R Rep., 116, 1, 10.1016/j.mser.2017.03.001 Sue, 1994, Fracture behavior of core-shell rubber-modified crosslinkable epoxy thermoplastics, Colloid Polym. Sci., 272, 456, 10.1007/BF00659459 Johnsen, 2007, Toughening mechanisms of nanoparticle-modified epoxy polymers, Polymer, 48, 530, 10.1016/j.polymer.2006.11.038 Liang, 2010, The toughening mechanism in hybrid epoxy-silica-rubber nanocomposites (HESRNs), Polymer, 51, 4880, 10.1016/j.polymer.2010.08.052 Sprenger, 2013, Epoxy resins modified with elastomers and surface-modified silica nanoparticles, Polymer, 54, 4790, 10.1016/j.polymer.2013.06.011 Gam, 2003, Fracture behavior of core-shell rubber–modified clay-epoxy nanocomposites, Polym. Eng. Sci., 43, 1635, 10.1002/pen.10137 Liu, 2004, Morphology and performance of epoxy nanocomposites modified with organoclay and rubber, Polym. Eng. Sci., 44, 1178, 10.1002/pen.20111 Li, 2016, Synergistic toughening of epoxy modified by graphene and block copolymer micelles, Macromolecules, 49, 9507, 10.1021/acs.macromol.6b01964 Yang, 2008, Polybenzoxazine-core shell rubber–carbon nanotube nanocomposites, Compos. Appl. Sci. Manuf., 39, 1653, 10.1016/j.compositesa.2008.07.004 Tang, 2013, Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles, Compos. Appl. Sci. Manuf., 45, 95, 10.1016/j.compositesa.2012.09.012 Bajpai, 2021, Epoxy based hybrid nanocomposites: fracture mechanisms, tensile properties and electrical properties, Mater. Today: Proceedings, 34, 210 Domun, 2015, Improving the fracture toughness and the strength of epoxy using nanomaterials--a review of the current status, Nanoscale, 7, 10294, 10.1039/C5NR01354B Liu, 2020, Manipulation of fracture behavior of poly(methyl methacrylate) nanocomposites by interfacial design of a metal-organic-framework nanoparticle toughener, Langmuir, 36, 11938, 10.1021/acs.langmuir.0c02029 Fu, 2008, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Compos. B Eng., 39, 933, 10.1016/j.compositesb.2008.01.002 Maxwell, 1984, Hybrid particulate-filled epoxy-polymers, J. Mater. Sci. Lett., 3, 9, 10.1007/BF00720061 Fröhlich, 2004, High-performance epoxy hybrid nanocomposites containing organophilic layered silicates and compatibilized liquid rubber, J. Appl. Polym. Sci., 92, 3088, 10.1002/app.20325 Marouf, 2009, Anomalous fracture behavior in an epoxy-based hybrid composite, Mater. Sci. Eng., A, 515, 49, 10.1016/j.msea.2009.03.028 Sue, 1993 Sun, 2010, Partially cured epoxy/SWCNT thin films for the reinforcement of vacuum-assisted resin-transfer-molded composites, Carbon, 48, 2364, 10.1016/j.carbon.2010.02.027 Hawkins, 2017, Tensile properties and electrical conductivity of epoxy composite thin films containing zinc oxide quantum dots and multi-walled carbon nanotubes, Carbon, 115, 18, 10.1016/j.carbon.2016.12.058 Gojny, 2003, Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites, Chem. Phys. Lett., 370, 820, 10.1016/S0009-2614(03)00187-8 Spitalsky, 2010, Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci., 35, 357, 10.1016/j.progpolymsci.2009.09.003 Kausar, 2016, Review of applications of polymer/carbon nanotubes and epoxy/CNT composites, Polym. Plast. Technol. Eng., 55, 1167, 10.1080/03602559.2016.1163588 Quaresimin, 2016, Toughening mechanisms in polymer nanocomposites: from experiments to modelling, Compos. Sci. Technol., 123, 187, 10.1016/j.compscitech.2015.11.027 Cha, 2019, Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets, Compos. B Eng., 162, 283, 10.1016/j.compositesb.2018.11.011 Gojny, 2005, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – a comparative study, Compos. Sci. Technol., 65, 2300, 10.1016/j.compscitech.2005.04.021 Fiedler, 2006, Fundamental aspects of nano-reinforced composites, Compos. Sci. Technol., 66, 3115, 10.1016/j.compscitech.2005.01.014 Wichmann, 2008, On nanocomposite toughness, Compos. Sci. Technol., 68, 329, 10.1016/j.compscitech.2007.06.027 Unnikrishnan, 2012, Toughening of epoxy resins, Des. Monomers Polym., 9, 129, 10.1163/156855506776382664 Shtein, 2013, Fracture behavior of nanotube–polymer composites: insights on surface roughness and failure mechanism, Compos. Sci. Technol., 87, 157, 10.1016/j.compscitech.2013.07.016 Li, 2015, Toughening rubbers with a hybrid filler network of graphene and carbon nanotubes, J. Mater. Chem., 3, 22385, 10.1039/C5TA05836H Kessman, 2015, Carbon nanotube pullout, interfacial properties, and toughening in ceramic nanocomposites: mechanistic insights from single fiber pullout analysis, Advanced Materials Interfaces, 2, 10.1002/admi.201400110 Gu, 2019, Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: simultaneously strengthening and toughening epoxy, Carbon, 142, 131, 10.1016/j.carbon.2018.10.029 Modena, 2019 Frigione, 2020, Recent advances and trends of nanofilled/nanostructured epoxies, Materials, 13, 10.3390/ma13153415 Mat Desa, 2019, Effect of core–shell rubber toughening on mechanical, thermal, and morphological properties of poly(lactic acid)/multiwalled carbon nanotubes nanocomposites, J. Appl. Polym. Sci., 136, 10.1002/app.47756 Peddini, 2014, Nanocomposites from styrene-butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 1: morphology and rheology, Polymer, 55, 258, 10.1016/j.polymer.2013.11.003 Bernal-Ortega, 2020, New insight into structure-property relationships of natural rubber and styrene-butadiene rubber nanocomposites filled with MWCNT, Polymer, 201 Kausar, 2020, Rubber toughened epoxy-based nanocomposite: a promising pathway toward advanced materials, J. Macromol. Sci., Part A, 57, 499, 10.1080/10601325.2020.1730190 Quan, 2016, Carbon nanotubes and core–shell rubber nanoparticles modified structural epoxy adhesives, J. Mater. Sci., 52, 4493, 10.1007/s10853-016-0695-9 Sun, 2010, Simple approach for preparation of epoxy hybrid nanocomposites based on carbon nanotubes and a model clay, Chem. Mater., 22, 3773, 10.1021/cm1009306 Marouf, 2016, Toughening of epoxy nanocomposites: nano and hybrid effects, Polym. Rev., 56, 70, 10.1080/15583724.2015.1086368 Sue, 1991, Study of rubber-modified brittle epoxy systems. Part II: toughening mechanisms under mode-I fracture, Polym. Eng. Sci., 31, 275, 10.1002/pen.760310411 Hirata, 2019, Epoxy nanocomposites with reduced coefficient of thermal expansion, J. Appl. Polym. Sci., 136, 10.1002/app.47703 Liu, 2020, High dielectric constant epoxy nanocomposites based on metal organic frameworks decorated multi-walled carbon nanotubes, Polymer, 207 Zhu, 2021, High performance epoxy nanocomposites based on dual epoxide modified α-Zirconium phosphate nanoplatelets, Polymer, 212 Yao, 2017, Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets, Compos. Sci. Technol., 146, 161, 10.1016/j.compscitech.2017.04.026 White, 2016, Rheology of electrostatically tethered nanoplatelets and multi-walled carbon nanotubes in epoxy, Polymer, 84, 223, 10.1016/j.polymer.2015.12.043 Gómez-del Río, 2016, Fracture behaviour of epoxy nanocomposites modified with triblock copolymers and carbon nanotubes, Compos. B Eng., 87, 343, 10.1016/j.compositesb.2015.08.085 Hsieh, 2011, The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer, J. Mater. Sci., 46, 7525, 10.1007/s10853-011-5724-0 Cha, 2017, Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes, Compos. B Eng., 129, 169, 10.1016/j.compositesb.2017.07.070 Liu, 2008, Nanocavitation in self-assembled amphiphilic block copolymer-modified epoxy, Macromolecules, 41, 7616, 10.1021/ma801037q