Fracture analysis of anodically bonded silicon substrates during the CMP process

Micro and Nano Systems Letters - Tập 6 - Trang 1-6 - 2018
Sung-min Sim1, Yeonsu Lee1, Hye-Lim Kang1, Youngsuk Hwang2, Chi-Hyun Park2, Ignacio Llamas-Garro3, Jung-Mu Kim4
1Division of Electronics and Information Engineering, Chonbuk National University, Jeonju, Republic of Korea
2Microinfinity Co., Ltd, Suwon, Republic of Korea
3Centre Tecnològic de Telecomunicacions de Catalunya, CERCA, Barcelona, Spain
4Department of Electronic Engineering, Chonbuk National University, Jeonju, Republic of Korea

Tóm tắt

In this paper, a stress and fracture study, occurring during the chemical mechanical polishing (CMP) of anodically bonded substrates is presented. The samples contain glass pillars, used to form the glass cavities and a silicon substrate sealing the glass structure, the samples are fabricated using the anodic bonding process. The mechanical stresses of the bonded silicon substrate are simulated using the COMSOL software. The fracture strength after post-processing is investigated based on the criterion value, which is the ratio of the anodically bonded area over the cavity area. It is found that the bonded area and the distribution of pillars are related to the mechanical stability of the bonded substrate during the CMP process. Studies on the stability of subsequent processes, like CMP after anodic bonding, plays an important role in improving the fabrication yield of anodic bonded devices.

Tài liệu tham khảo

Cunningham Shawn, Kupnik Mario (2011) Wafer bonding. In: Ghodssi Reza, Lin Pinyen (eds) MEMS materals and processes handbook. Springer, New York Hinzel DH, Goldsmith CL, Linder LF (2003) Method of integrating MEMS device with low-resistivity silicon substrates. US Patent 6,559,530 B2, May, 2003 Seki T, Uno Y, Narise K, Masuda T, Inoue K, Sato S, Sato F, Imanaka K, Sugiyama S (2006) Development of a large-force low-loss metal-contact RF MEMS switch. Sens Actuators A 132(2):683–688 Lee Byeungleul, Seok Seonho, Chun Kukjin (2003) A study on wafer level vacuum packaging for MEMS devices. J Micromech Microeng 13(5):663–669 Auersperg J, Auerswald E, Collet C, Dean Th, Vogel D, Winkler Th, Rzepka S (2018) Investigations of the impact of initial stresses on fracture and delamination risks of an avionics MEMS pressure sensor. Microelectron Reliab 87:238–244 Ma Zhibo, Wang Yinan, Shen Qiang, Zhang Han, Guo Xuetao (2018) Key processes of silicon-on-glass MEMS fabrication technology for gyroscope application. Sensors. 18(4):1240 Sim S, Lee Y, Kang H-L, Hwang Y, Park C-H, Llamas-Garro I, Kim J-M (2017) Stress analysis of anodic bonded wafer after CMP process In: Proceedings of 43rd international conference on micro and nano engineering (mne2017), 18–22 September 2017 Ring Terry A, Feeney Paul, Boldridge David, Kasthurirangan Jaishankar, Li Shoutian, Dirksen James A (2007) Brittle and ductile fracture mechanics analysis of surface damage caused during CMP. J Electrochem Soc 154(3):H239–H248