Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach

Finite Elements in Analysis and Design - Tập 177 - Trang 103417 - 2020
Erfan Azinpour1,2, Roya Darabi1,2, Jose Cesar de Sa1,2, Abel Santos1,2, Josef Hodek3, Jan Dzugan3
1Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), FEUP campus, Rua Dr. Roberto Frias, 400, 4200-465, Porto, Portugal
2Faculty of Engineering of University of Porto (FEUP), Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
3COMTES FHT a.s., Průmyslová 995, 334 41 Dobřany, Czech Republic

Tài liệu tham khảo

Gibson, 2010 Muller, 2013, Journal of Materials Processing Technology Modeling and control of a direct laser powder deposition process for Functionally Graded Materials ( FGM ) parts manufacturing, J. Mater. Process. Technol., 213, 685, 10.1016/j.jmatprotec.2012.11.020 Antony, 2014, Numerical and experimental investigations on laser melting of stainless steel 316L metal powders, J. Manuf. Process., 16, 345, 10.1016/j.jmapro.2014.04.001 Yasa, 2011, Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting, Procedia Eng., 19, 389, 10.1016/j.proeng.2011.11.130 Salman, 2019, Selective laser melting of 316L stainless steel: influence of TiB2 addition on microstructure and mechanical properties, Mater Today Commun., 21 Andreatta, 2019, Corrosion behaviour of 316L stainless steel manufactured by selective laser melting, Mater. Corros., 70, 1633, 10.1002/maco.201910792 Wolff, 2016, Anisotropic properties of directed energy deposition (DED)-processed Ti–6Al–4V, J. Manuf. Process., 24, 397, 10.1016/j.jmapro.2016.06.020 Rice, 1969, On the ductile enlargement of voids in triaxial stress fields∗, J. Mech. Phys. Solid., 17, 201, 10.1016/0022-5096(69)90033-7 Gurson, 1977, Continuum theory of ductile rupture by void nucleation and growth: Part I—yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 2, 10.1115/1.3443401 Tvergaard, 1984, Analysis of the cup-cone fracture in a round tensile bar, Acta Metall., 32, 157, 10.1016/0001-6160(84)90213-X Rousselier, 1987, Ductile fracture models and their potential in local approach of fracture, Nucl. Eng. Des., 105, 97, 10.1016/0029-5493(87)90234-2 Rousselier, 2001, Dissipation in porous metal plasticity and ductile fracture, J. Mech. Phys. Solid., 49, 1727, 10.1016/S0022-5096(01)00013-8 Besson, 2003, Modeling of plane strain ductile rupture, Int. J. Plast., 19, 1517, 10.1016/S0749-6419(02)00022-0 Tu, 2013, Simulation of the damage behaviour of electron beam welded joints with the Rousselier model, Eng. Fract. Mech., 103, 153, 10.1016/j.engfracmech.2012.07.002 Zhao, 2014, Experimental and numerical research for the failure behavior of the clinched joint using modified Rousselier model, J. Mater. Process. Technol., 214, 2134, 10.1016/j.jmatprotec.2014.03.013 Sari Sarraf, 2018, Numerical analysis of damage evolution and formability of DP600 sheet with an extended Rousselier damage model, Int. J. Solid Struct., 134, 70, 10.1016/j.ijsolstr.2017.10.030 Tu, 2018, 3D optical measurement and numerical simulation of the fracture behavior of Al6061 laser welded joints, Eng. Fract. Mech., 1 Arun, 2018 Bourdin, 2000, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solid., 48, 797, 10.1016/S0022-5096(99)00028-9 Mumford, 1989, Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math., 42, 577, 10.1002/cpa.3160420503 Miehe, 2010, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng., 83, 1273, 10.1002/nme.2861 Borden, 2012, A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng., 217, 77, 10.1016/j.cma.2012.01.008 Kuhn, 2008, A phase field model for fracture, Proc. Appl. Math. Mech., 8, 10223, 10.1002/pamm.200810223 Duda, 2014, A phase-field/gradient damage model for brittle fracture in elastic-plastic solids, Int. J. Plast., 65, 269, 10.1016/j.ijplas.2014.09.005 Liu, 2007, A nodal integration technique for meshfree radial point interpolation method (NI-RPIM), Int. J. Solid Struct., 44, 3840, 10.1016/j.ijsolstr.2006.10.025 Areias, 2016, Phase-field analysis of finite-strain plates and shells including element subdivision, Comput. Methods Appl. Mech. Eng., 312, 322, 10.1016/j.cma.2016.01.020 Areias, 2018, Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation, Eng. Fract. Mech., 189, 339, 10.1016/j.engfracmech.2017.11.017 Verhoosel, 2013, A phase-field model for cohesive fracture, Int. J. Numer. Methods Eng., 96, 43, 10.1002/nme.4553 Miehe, 2015, Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic–plastic solids, Comput. Methods Appl. Mech. Eng., 294, 1 Ambati, 2015, Phase-field modeling of ductile fracture, Comput. Mech., 55, 1017, 10.1007/s00466-015-1151-4 Borden, 2017, Corrigendum to “A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects” [Comput, Methods Appl. Mech. Energy, 312, 130 Aldakheel, 2017, A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling, Comput. Mech., 1 Dittmann, 2018, Variational phase-field formulation of non-linear ductile fracture, Comput. Methods Appl. Mech. Eng., 342, 71, 10.1016/j.cma.2018.07.029 Alessi, 2018, vol. 46 Guo, 2017, Journal of Materials Processing Technology Study on microstructure , mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition, J. Mater. Process. Technol., 240, 12, 10.1016/j.jmatprotec.2016.09.005 Susan, 2006, Quantitative characterization of porosity in stainless steel LENS powders and deposits, Mater. Char., 57, 36, 10.1016/j.matchar.2005.12.005 Wang, 2009, Pore formation in laser-assisted powder deposition process, J. Manuf. Sci. Eng. Trans. ASME, 131 Wolff, 2017, A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V, Acta Mater., 132, 106, 10.1016/j.actamat.2017.04.027 Gurson, 1977, Continuum theory of ductile rupture by void nucleation and growth: Part I—yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 2, 10.1115/1.3443401 Lorentz, 2008, Numerical simulation of ductile fracture with the Rousselier constitutive law, Comput. Methods Appl. Mech. Eng., 197, 1965, 10.1016/j.cma.2007.12.015 Zhang, 2000, Complete Gurson model approach for ductile fracture, Eng. Fract. Mech., 67, 155, 10.1016/S0013-7944(00)00055-2 Miehe, 2010, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng., 83, 1273, 10.1002/nme.2861 Badnava, 2017, A phase field model for rate-dependent ductile fracture, Metals (Basel), 7, 180, 10.3390/met7050180 Aravas, 1987, On the numerical integration of a class of pressure-dependent plasticity models, Int. J. Numer. Methods Eng., 24, 1395, 10.1002/nme.1620240713 Zhang, 1995, Explicit consistent tangent moduli with a return mapping algorithm for pressure-dependent elastoplasticity models, Comput. Methods Appl. Mech. Eng., 121, 29, 10.1016/0045-7825(94)00707-T Liu, 2016, Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model, Comput. Mater. Sci., 121, 35, 10.1016/j.commatsci.2016.04.009 Molnár, 2017, 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture, Finite Elem. Anal. Des., 130, 27, 10.1016/j.finel.2017.03.002 Rousselier, 2015, Combining porous plasticity with Coulomb and Portevin-Le Chatelier models for ductile fracture analyses, Int. J. Plast., 69, 118, 10.1016/j.ijplas.2015.02.008 Gao, 2005, On ductile fracture initiation toughness: effects of void volume fraction, void shape and void distribution, Int. J. Solid Struct., 42, 5097, 10.1016/j.ijsolstr.2005.02.028