Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach
Tài liệu tham khảo
Gibson, 2010
Muller, 2013, Journal of Materials Processing Technology Modeling and control of a direct laser powder deposition process for Functionally Graded Materials ( FGM ) parts manufacturing, J. Mater. Process. Technol., 213, 685, 10.1016/j.jmatprotec.2012.11.020
Antony, 2014, Numerical and experimental investigations on laser melting of stainless steel 316L metal powders, J. Manuf. Process., 16, 345, 10.1016/j.jmapro.2014.04.001
Yasa, 2011, Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting, Procedia Eng., 19, 389, 10.1016/j.proeng.2011.11.130
Salman, 2019, Selective laser melting of 316L stainless steel: influence of TiB2 addition on microstructure and mechanical properties, Mater Today Commun., 21
Andreatta, 2019, Corrosion behaviour of 316L stainless steel manufactured by selective laser melting, Mater. Corros., 70, 1633, 10.1002/maco.201910792
Wolff, 2016, Anisotropic properties of directed energy deposition (DED)-processed Ti–6Al–4V, J. Manuf. Process., 24, 397, 10.1016/j.jmapro.2016.06.020
Rice, 1969, On the ductile enlargement of voids in triaxial stress fields∗, J. Mech. Phys. Solid., 17, 201, 10.1016/0022-5096(69)90033-7
Gurson, 1977, Continuum theory of ductile rupture by void nucleation and growth: Part I—yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 2, 10.1115/1.3443401
Tvergaard, 1984, Analysis of the cup-cone fracture in a round tensile bar, Acta Metall., 32, 157, 10.1016/0001-6160(84)90213-X
Rousselier, 1987, Ductile fracture models and their potential in local approach of fracture, Nucl. Eng. Des., 105, 97, 10.1016/0029-5493(87)90234-2
Rousselier, 2001, Dissipation in porous metal plasticity and ductile fracture, J. Mech. Phys. Solid., 49, 1727, 10.1016/S0022-5096(01)00013-8
Besson, 2003, Modeling of plane strain ductile rupture, Int. J. Plast., 19, 1517, 10.1016/S0749-6419(02)00022-0
Tu, 2013, Simulation of the damage behaviour of electron beam welded joints with the Rousselier model, Eng. Fract. Mech., 103, 153, 10.1016/j.engfracmech.2012.07.002
Zhao, 2014, Experimental and numerical research for the failure behavior of the clinched joint using modified Rousselier model, J. Mater. Process. Technol., 214, 2134, 10.1016/j.jmatprotec.2014.03.013
Sari Sarraf, 2018, Numerical analysis of damage evolution and formability of DP600 sheet with an extended Rousselier damage model, Int. J. Solid Struct., 134, 70, 10.1016/j.ijsolstr.2017.10.030
Tu, 2018, 3D optical measurement and numerical simulation of the fracture behavior of Al6061 laser welded joints, Eng. Fract. Mech., 1
Arun, 2018
Bourdin, 2000, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solid., 48, 797, 10.1016/S0022-5096(99)00028-9
Mumford, 1989, Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math., 42, 577, 10.1002/cpa.3160420503
Miehe, 2010, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng., 83, 1273, 10.1002/nme.2861
Borden, 2012, A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng., 217, 77, 10.1016/j.cma.2012.01.008
Kuhn, 2008, A phase field model for fracture, Proc. Appl. Math. Mech., 8, 10223, 10.1002/pamm.200810223
Duda, 2014, A phase-field/gradient damage model for brittle fracture in elastic-plastic solids, Int. J. Plast., 65, 269, 10.1016/j.ijplas.2014.09.005
Liu, 2007, A nodal integration technique for meshfree radial point interpolation method (NI-RPIM), Int. J. Solid Struct., 44, 3840, 10.1016/j.ijsolstr.2006.10.025
Areias, 2016, Phase-field analysis of finite-strain plates and shells including element subdivision, Comput. Methods Appl. Mech. Eng., 312, 322, 10.1016/j.cma.2016.01.020
Areias, 2018, Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation, Eng. Fract. Mech., 189, 339, 10.1016/j.engfracmech.2017.11.017
Verhoosel, 2013, A phase-field model for cohesive fracture, Int. J. Numer. Methods Eng., 96, 43, 10.1002/nme.4553
Miehe, 2015, Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic–plastic solids, Comput. Methods Appl. Mech. Eng., 294, 1
Ambati, 2015, Phase-field modeling of ductile fracture, Comput. Mech., 55, 1017, 10.1007/s00466-015-1151-4
Borden, 2017, Corrigendum to “A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects” [Comput, Methods Appl. Mech. Energy, 312, 130
Aldakheel, 2017, A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling, Comput. Mech., 1
Dittmann, 2018, Variational phase-field formulation of non-linear ductile fracture, Comput. Methods Appl. Mech. Eng., 342, 71, 10.1016/j.cma.2018.07.029
Alessi, 2018, vol. 46
Guo, 2017, Journal of Materials Processing Technology Study on microstructure , mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition, J. Mater. Process. Technol., 240, 12, 10.1016/j.jmatprotec.2016.09.005
Susan, 2006, Quantitative characterization of porosity in stainless steel LENS powders and deposits, Mater. Char., 57, 36, 10.1016/j.matchar.2005.12.005
Wang, 2009, Pore formation in laser-assisted powder deposition process, J. Manuf. Sci. Eng. Trans. ASME, 131
Wolff, 2017, A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V, Acta Mater., 132, 106, 10.1016/j.actamat.2017.04.027
Gurson, 1977, Continuum theory of ductile rupture by void nucleation and growth: Part I—yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 2, 10.1115/1.3443401
Lorentz, 2008, Numerical simulation of ductile fracture with the Rousselier constitutive law, Comput. Methods Appl. Mech. Eng., 197, 1965, 10.1016/j.cma.2007.12.015
Zhang, 2000, Complete Gurson model approach for ductile fracture, Eng. Fract. Mech., 67, 155, 10.1016/S0013-7944(00)00055-2
Miehe, 2010, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng., 83, 1273, 10.1002/nme.2861
Badnava, 2017, A phase field model for rate-dependent ductile fracture, Metals (Basel), 7, 180, 10.3390/met7050180
Aravas, 1987, On the numerical integration of a class of pressure-dependent plasticity models, Int. J. Numer. Methods Eng., 24, 1395, 10.1002/nme.1620240713
Zhang, 1995, Explicit consistent tangent moduli with a return mapping algorithm for pressure-dependent elastoplasticity models, Comput. Methods Appl. Mech. Eng., 121, 29, 10.1016/0045-7825(94)00707-T
Liu, 2016, Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model, Comput. Mater. Sci., 121, 35, 10.1016/j.commatsci.2016.04.009
Molnár, 2017, 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture, Finite Elem. Anal. Des., 130, 27, 10.1016/j.finel.2017.03.002
Rousselier, 2015, Combining porous plasticity with Coulomb and Portevin-Le Chatelier models for ductile fracture analyses, Int. J. Plast., 69, 118, 10.1016/j.ijplas.2015.02.008
Gao, 2005, On ductile fracture initiation toughness: effects of void volume fraction, void shape and void distribution, Int. J. Solid Struct., 42, 5097, 10.1016/j.ijsolstr.2005.02.028