Fracture Toughness of Hybrid Carbon Fibre/Epoxy Enhanced by Graphene and Carbon Nanotubes
Tóm tắt
Carbon-based nanoparticles have attracted considerable attention in materials science and engineering fields as they can significantly improve the electro-thermo-mechanical properties of polymer-based materials. With the need of enhancing the mechanical property through the thickness direction of a carbon fibre reinforced polymer (CFRP) system, this study investigates the effect of graphene nanoplatelets (GNP), multi-walled carbon nanotubes (MWCNT) and their hybridisations on its Mode I interlaminar fracture toughness. Various nanoplatelet sizes and weight percentages are compared to prohibit their agglomeration in epoxy which can drastically reduce the mechanical properties of CFRP. The smallest GNP size, 1 μm, dispersed in the n-methyl-2-pyrrolidone solvent leads to an advanced 146% enhancement of Mode I interlaminar fracture toughness on the CFRP system. The acetone solvent is found less surface compatible with the nanoplatelets, but provides a simple and environmentally friendly manufacturing process. The hybrid GNP/MWCNT with 1wt% content dispersed in acetone solvent shows the synergistic effect and reaches a 120% enhancement of Mode I interlaminar fracture toughness of CFRP. Additionally, the application of the thin film hot press technique on nanoplatelets enhanced CFRP demonstrates an effective and promising solution to manufacture homogeneous multi-phase composites.
Tài liệu tham khảo
Njuguna, J., Pielichowski, K., Alcock, J.: Epoxy-Based Fibre Reinforced Nanocomposites. Adv. Eng. Mater. 9(10), 835–847 (2007)
Meier, U.: Strengthening of structures using carbon fibre/epoxy composites. Constr. Build. Mater. 9(6), 341–351 (1995)
Salvado, R., Lopes, C., Szojda, L., Araújo, P., Gorski, M., Velez, F., et al.: Carbon Fiber Epoxy Composites for Both Strengthening and Health Monitoring of Structures. Sensors. 15(5), 10753–10770 (2015)
Schultz, J., Lavielle, L., Martin, C.: The Role of the Interface in Carbon Fibre-Epoxy Composites. J. Adhes. 23(1), 45–60 (1987)
Borowski, E., Soliman, E., Kandil, U., Taha, M.: Interlaminar Fracture Toughness of CFRP Laminates Incorporating Multi-Walled Carbon Nanotubes. Polymers 7(6), 1020–1045 (2015)
Tamuzs, V., Tarasovs, C., Vilks, U.: Delamination properties of translaminar-reinforced composites. Compos. Sci. Technol. 63(10), 1423–1431 (2003)
Pan, Y., Wu, G., Cheng, X., Zhang, Z., Li, M., Ji, S., Huang, Z.: Mode I and Mode II interlaminar fracture toughness of CFRP/magnesium alloys hybrid laminates. Compos. Interfaces 23(5), 453–465 (2016)
Pullicino, E., Zou, W., Gresil, M., Soutis, C.: The effect of shear mixing speed and time on the mechanical properties of GNP/epoxy composites. Appl. Compos. Mater. 24(2), 301–311 (2016)
Wong, H.S.P., Akinwande, D.: Carbon nanotube and graphene device physics. 1–251 (2010)
Balandin, A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011)
Poutrel, Q.A., Manta, A., Wang, Z., Wang, D., Soutis, C., Gresil, M.: Effect of pre and post-dispersion on electro-thermo-mechanical properties of a graphene enhanced epoxy. Appl. Compos. Mater. 24, 313–336 (2017)
Kim, H., Oh, E., Hahn, H., Lee, K.: Enhancement of fracture toughness of hierarchical carbon fiber composites via improved adhesion between carbon nanotubes and carbon fibers. Compos. A Appl. Sci. Manuf. 71, 72–83 (2015)
Mirjalili, V., Ramachandramoorthy, R., Hubert, P.: Enhancement of fracture toughness of carbon fiber laminated composites using multi wall carbon nanotubes. Carbon 79, 413–423 (2014)
Quan, D., Urdániz, J.L., Ivanković, A.: Enhancing mode-I and mode-II fracture toughness of epoxy and carbon fibre reinforced epoxy composites using multi-walled carbon nanotubes. Mater. Des. 143, 81–92 (2018)
Kumar, A., Roy, A.: Characterization of mixed mode fracture properties of nanographene reinforced epoxy and Mode I delamination of its carbon fiber composite. Compos. B Eng. 134, 98–105 (2018)
Du, X., Zhou, H., Sun, W., Liu, H., Zhou, G., Zhou, H., et al.: Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Compos. Sci. Technol. 140, 123–133 (2017)
Ning, H., Li, J., Hu, N., Yan C., Liu, Y., Wu, L., Liu, F., Zhang, J.: Interlaminar mechanical properties of carbon fiber reinforced plastic laminates modified with graphene oxide interleaf. Carbon 91:224–233 (2015)
Hu, N., Masuda, Z., Yamamoto, G., Fukunaga, H., Hashida, T., Qiu, J.: Effect of fabrication process on electrical properties of polymer/multi-wall carbon nanotube nanocomposites. Compos. A Appl. Sci. Manuf. 39(5), 893–903 (2008)
Wang, F., Drzal, L., Qin, Y., Huang, Z.: Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci. 50(3), 1082–1093 (2014)
Chong, H., Hinder, S., Taylor, A.: Graphene nanoplatelet-modified epoxy: effect of aspect ratio and surface functionality on mechanical properties and toughening mechanisms. J. Mater. Sci. 51(19), 8764–8790 (2016)
Prolongo, S., Jiménez-Suárez, A., Moriche, R., Ureña, A.: Graphene nanoplatelets thickness and lateral size influence on the morphology and behavior of epoxy composites. Eur. Polymer J. 53, 292–301 (2014)
Johnson, D., Dobson, B., Coleman, K.: A manufacturing perspective on graphene dispersions. Curr. Opin. Colloid Interface Sci. 20(5–6), 367–382 (2015)
Szeluga, U., Kumanek, B., Trzebicka, B.: Synergy in hybrid polymer/nanocarbon composites. A review. Compos. A: Appl. Sci. Manuf. 73:204–231 (2015)
Moosa, A.: Mechanical and Electrical Properties of Graphene Nanoplates and Carbon- Nanotubes Hybrid Epoxy Nanocomposites. Am. J. Mat. Sci. 6(6), 157–165 (2016)
Srivastava, V., Gries, T., Veit, D., Quadflieg, T., Mohr, B., Kolloch, M.: Effect of nanomaterial on mode I and mode II interlaminar fracture toughness of woven carbon fabric reinforced polymer composites. Eng. Fract. Mech. 180, 73–86 (2017)
Li, W., Dichiara, A., Bai, J.: Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos. Sci. Technol. 74, 221–227 (2013)
Wang, P., Hsieh, T., Chiang, C., Shen, M.: Synergetic Effects of Mechanical Properties on Graphene Nanoplatelet and Multiwalled Carbon Nanotube Hybrids Reinforced Epoxy/Carbon Fiber Composites. J. Nanomater. 1–9 (2015)
Dang, C.Y., Liu, K., Fan, M.X., Zhu, S.Q., Zhao, S.H., Shen, X.J.: Investigation on cryogenic interlaminar shear properties of carbon fabric/epoxy composites improved by graphene oxide-coated glass fibers. Compos. Commun. 22, 2452–2139 (2020)
Azimpour-Shishevan, F., Akbulut, H., Mohtadi-Bonab, MA.: Synergetic effects of carbon nanotube and graphene addition on thermo-mechanical properties and vibrational behavior of twill carbon fiber reinforced polymer composites. Polymer Testing. 90 (2020)
Tugrul Seyhan, A., Tanoglu, M., Schulte, K.: Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Eng. Fract. Mech. 75(18), 5151–5162 (2008)
Standard test method for mode i interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. ASTM Standards (2007)
Ahmad, R., Young, S. J. R., Kinloch, A., Raman, I.: Spectra and Mechanical Properties of Graphene/Polypropylene Nanocomposites. Int. J. Chem. Eng. Appl. 6(1), 1–5 (2015)
Bokobza, L., Zhang, J.: Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym. Lett. 6(7), 601–608 (2012)
Gresil, M., Wang, Z., Poutrel, Q., Soutis, C.: Thermal diffusivity mapping of graphene based polymer nanocomposites. Sci. Rep. 7(1), (2017)
Tang, L., Wan, Y., Yan, D., Pei, Y., Zhao, L., Li, Y., et al.: The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16–27 (2013)
Sun, J., Li, H., Wang, C., Yuan, D., Stubbs, L., He, C.: The Effect of Residual Solvent N′-Dimethylformamide on the Curing Reaction and Mechanical Properties of Epoxy and Lignin Epoxy Composites. Macromol. Chem. Phys. 217(9), 1065–1073 (2016)