Fracture Strength of Zirconia Implants after Artificial Aging

Clinical Implant Dentistry and Related Research - Tập 11 Số 2 - Trang 158-166 - 2009
Marina Andreiotelli1, Ralf‐Joachim Kohal2
1Assistant Professor, Department of Prosthodontics, School of Dentistry, Albert-Ludwigs-University Freiburg, Germany
2Professor, Department of Prosthodontics, School of Dentistry, Albert-Ludwigs University, Freiburg, Germany

Tóm tắt

ABSTRACT

Background: Zirconia (ZrO2) might be an alternative material to titanium (Ti) for dental implant fabrication. However, no data are available on the fracture strength of one‐piece ZrO2 oral implants.

Purpose: The objective of this study was to evaluate the fracture strength of ZrO2 implants after exposure to the artificial mouth.

Materials and Methods: One hundred twenty ZrO2 and Ti implants were used. The Ti implants were divided into two control groups (A and B). ZrO2 implants manufactured from yttria‐stabilized tetragonal ZrO2 polycrystal (Y‐TZP) in group C, from Y‐TZP dotted with alumina (Y‐TZP‐A) in group D, and from Y‐TZP‐A with a modified surface in groups E and F were used. In group F, the implant heads were prepared, and in group G, the implants were restored with ZrO2 crowns. Each group included 16 samples with the exception of group D, which included 24 samples.

A subgroup of each implant type (eight implants) was subjected to thermomechanical cycling in a chewing simulator prior to fracture testing. Test specimens were then loaded until a fracture occurred.

Results: Seven of the 120 samples failed in the chewing simulator. ZrO2 implant fracture occurred at 725 to 850 N when the implants were not prepared, and at 539 to 607 N when prepared. The samples in group A fractured at the level of the abutment screw. All ZrO2 implants fractured at the level of the Technovit® resin (Heraeus Kulzer GmbH & Co., Wehrheim, Germany). No fracture of the ZrO2 crowns in group G was observed.

Conclusion: Mean fracture strength values obtained were all within the limits of clinical acceptance. However, implant preparation had a statistically significant negative influence on the implant fracture strength. Long‐term clinical data are necessary before one‐piece ZrO2 implants can be recommended for daily practice.

Từ khóa


Tài liệu tham khảo

10.1111/j.1708-8208.2000.tb00119.x

Binon PP., 2000, Implants and components: entering the new millennium, Int J Oral Maxillofac Implants, 15, 76

10.1902/jop.1988.59.5.287

Heydecke G, 1999, Optimal esthetics in single‐tooth replacement with the re‐implant system: a case report, Int J Prosthodont, 12, 184

Wohlwend A, 1996, Das Zirkonoxidabutment – ein neues vollkeramisches Konzept zur ästhetischen Verbesserung der Suprastruktur in der Implantologie, Quintessenz Zahntechn, 22, 364

Stejskal J, 1999, The role of metals in autoimmunity and the link to neuroendocrinology, Neuroendocrinol Lett, 20, 351

Valentine‐Thon E, 2003, Validity of MELISA for metal sensitivity testing, Neuroendocrinol Lett, 24, 57

Kohal RJ, 2004, A zirconia implant‐crown system: a case report, Int J Periodontics Restorative Dent, 24, 147

Schulte W, 1976, Das Tübinger Sofort‐Implantat, Quintessenz, 27, 17

10.1016/S0142-9612(98)00010-6

10.1038/258703a0

Clarke IC, 2003, Current status of zirconia used in total hip implants, J Bone Joint Surg Am, 85, 73, 10.2106/00004623-200300004-00009

10.1016/j.dental.2003.05.002

10.1007/BF00553200

10.1016/0142-9612(85)90070-5

Strub JR, 1987, Die Versorgung des Lückengebißes mit implantatgetragenen Brücken. Eine Longitudinalstudie über 7,5 Jahre, Zeitschrift für Zahnärztliche Implantologie, 3, 242

10.1111/j.1708-8208.2005.tb00070.x

Andersson M, 1998, Procera: a new way to achieve an all‐ceramic crown, Quintessence Int, 29, 285

10.1046/j.1365-2842.1999.00416.x

Krejci I, 1990, In‐vitro‐Testverfahren zur Evaluation dentaler Restaurationssysteme. 1. Computergesteuerter Kausimulator, Schweiz Monatsschr Zahnmed, 100, 953

10.1016/0022-3913(78)90042-2

10.1177/00220345000790071501

Schwickerath H., 1988, Vollkeramische Brücken. Gerüste aus Kern‐oder Hartkernmassen, Dent Lab, 36, 1081

Schwickerath H., 1986, Dauerfestigkeit von Keramik, Dtsch Zahnärztl Z, 41, 264

10.1097/00003086-200010000-00013

10.1002/jbm.820280512

10.1016/j.biomaterials.2005.07.034

10.1016/S0109-5641(99)00070-6

10.1111/j.1151-2916.1985.tb15305.x

10.1111/j.1151-2916.1980.tb10671.x

10.1111/j.1151-2916.1983.tb10543.x

10.1002/jbm.b.30382

10.1016/j.jdent.2004.07.001

10.1177/154405910208100711

10.1007/BF02402664

10.1111/j.1151-2916.1985.tb15239.x

10.1016/j.biomaterials.2005.11.021

10.1016/j.prosdent.2003.08.008

10.1016/j.joms.2005.05.150

10.1111/j.1708-8208.2005.tb00071.x

Campelo LD, 2002, Flapless implant surgery: a 10‐year clinical retrospective analysis, Int J Oral Maxillofac Implants, 17, 271

Covani U, 2004, Soft tissue healing around implants placed immediately after tooth extraction without incision: a clinical report, Int J Oral Maxillofac Implants, 19, 549

10.1902/jop.1998.69.7.743

Gervais MJ, 2007, A rationale for retrievability of fixed, implant‐supported prostheses: a complication‐based analysis, Int J Prosthodont, 20, 13

10.1016/S0022-3913(03)00212-9

10.1034/j.1600-051X.29.s3.12.x

10.1177/154405910308200316

10.1902/jop.2002.73.10.1111

10.1902/jop.2003.74.3.346

10.1034/j.1600-0501.2001.120603.x

Kinsel RP, 2000, Development of gingival esthetics in the edentulous patient with immediately loaded, single‐stage, implant‐supported fixed prostheses: a clinical report, Int J Oral Maxillofac Implants, 15, 711