Fracture Failure Evaluation of Foam WMA Mixes Containing RAP by Applying Weibull Probability Distribution Function

Springer Science and Business Media LLC - Tập 15 Số 6 - Trang 1277-1296 - 2022
Amir Kavussi1, Seyed Mohsen Motevalizadeh1
1Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Padula, F. R. G., Nicodemos, S., Mendes, J. C., Willis, R., & Taylor, A. (2019). Evaluation of fatigue performance of high RAP-WMA mixtures. International Journal of Pavement Research and Technology, 12, 430–434. https://doi.org/10.1007/s42947-019-0051-y

Kavussi, A., Motevalizadeh, M., Karimi, A., & Rahimizadeh, A. (2017). Evaluating the moisture resistance of foam warm mix asphalt using image processing method. Computational Research Progress in Applied Science & Engineering, 03, 1–7.

Newcomb, D. E., Arambula, E., Yin, F., Zhang, J., Bhasin, A., Li, W., & Arega, Z. (2015). Properties of foamed asphalt for warm mix asphalt applications. Properties of Foamed Asphalt for Warm Mix Asphalt. https://doi.org/10.17226/22145

Martin, H., Kerstin, Z., & Joachim, M. (2019). Reduced emissions of warm mix asphalt during construction. Road Materials and Pavement Design. https://doi.org/10.1080/14680629.2019.1628426

You, L., You, Z., Dai, Q., Guo, S., Wang, J., & Schultz, M. (2018). Characteristics of water-foamed asphalt mixture under multiple freeze-thaw cycles: Laboratory evaluation. Journal of Materials in Civil Engineering, 30, 1–8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002474

Li, X., Marasteanu, M. O., Williams, R. C., & Clyne, T. R. (2008). Effect of reclaimed asphalt pavement (proportion and type) and binder grade on asphalt mixtures. Transportation Research Record. https://doi.org/10.3141/2051-11

I. Al-Qadi, H. Ozer, J. Lambros, A. El Khatib, D. Singhvi, Testing protocols to ensure performance of high asphalt binder replacement mixes using RAP and RAS, (2015)

Song, W., Huang, B., & Shu, X. (2018). Influence of warm-mix asphalt technology and rejuvenator on performance of asphalt mixtures containing 50% reclaimed asphalt pavement. Journal of Cleaner Production, 192, 191–198. https://doi.org/10.1016/j.jclepro.2018.04.269

A. Arshadi, M. Rahman, M. Barman, Development of Special Provision for Mix Design of Foamed WMA Containing Development of Special Provision for Mix Design of Foamed WMA Containing RAP The University of Oklahoma, (2019). https://doi.org/10.13140/RG.2.2.29342.97604.

Kaseer, F., Yin, F., Arámbula-Mercado, E., Martin, A. E., Daniel, J. S., & Salari, S. (2018). Development of an index to evaluate the cracking potential of asphalt mixtures using the semi-circular bending test. Construction and Building Materials, 167, 286–298. https://doi.org/10.1016/j.conbuildmat.2018.02.014

Li, C., Xiao, Y., Chen, Z., & Wu, S. (2016). Crack resistance of asphalt mixture with steel slag powder. Emerging Materials Research. https://doi.org/10.1680/jemmr.16.00009

Fakhri, M., & Ahmadi, A. (2017). Evaluation of fracture resistance of asphalt mixes involving steel slag and RAP: Susceptibility to aging level and freeze and thaw cycles. Construction and Building Materials, 157, 748–756. https://doi.org/10.1016/j.conbuildmat.2017.09.116

Fakhri, M., Kharrazi, E. H., & Aliha, M. R. M. (2018). Mixed mode tensile—In plane shear fracture energy determination for hot mix asphalt mixtures under intermediate temperature conditions. Engineering Fracture Mechanics, 192, 98–113. https://doi.org/10.1016/j.engfracmech.2018.02.007

Xiao, F., Newton, D., Putman, B., Punith, V. S., & Amirkhanian, S. N. (2013). A long-term ultraviolet aging procedure on foamed WMA mixtures. Materials and Structures Construction, 46, 1987–2001. https://doi.org/10.1617/s11527-013-0031-7

M.A. Rahman, A. Arshadi, R. Ghabchi, S.A. Ali, M. Zaman, Evaluation of Rutting and Cracking Resistance of Foamed Warm Mix Asphalt Containing RAP (2019). https://doi.org/10.1007/978-3-319-96241-2_11.

Ameri, M., Mohammadi, M. H., Motevalizadeh, S. M., & Mousavi, A. (2019). Experimental study to investigate the performance of cold in-place recycling asphalt mixes. Proceedings of the Institution of Civil Engineers Transport, 172, 360–370. https://doi.org/10.1680/jtran.17.00062

Esfandabad, A. S., Motevalizadeh, S. M., Sedghi, R., Ayar, P., & Asgharzadeh, S. M. (2020). Fracture and mechanical properties of asphalt mixtures containing granular polyethylene terephthalate (PET). Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2020.120410

Motevalizadeh, S. M., Sedghi, R., & Rooholamini, H. (2020). Fracture properties of asphalt mixtures containing electric arc furnace slag at low and intermediate temperatures. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2019.117965

A.C. Falchetto, K.H. Moon, D. Wang, C. Riccardi, M.P. Wistuba, A. Cannone, K.H. Moon, D. Wang, C. Riccardi, Comparison of low-temperature fracture and strength properties of asphalt mixture obtained from IDT and SCB under different testing configurations, (2018). https://doi.org/10.1080/14680629.2018.1418722.

Ozer, H., Al-Qadi, I. L., Lambros, J., El-Khatib, A., Singhvi, P., & Doll, B. (2016). Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters. Construction and Building Materials, 115, 390–401. https://doi.org/10.1016/j.conbuildmat.2016.03.144

Son, S., Said, I. M., & Al-Qadi, I. L. (2019). Fracture properties of asphalt concrete under various displacement conditions and temperatures. Construction and Building Materials, 222, 332–341. https://doi.org/10.1016/j.conbuildmat.2019.06.161

Zhu, Y., Dave, E. V., Rahbar-Rastegar, R., Daniel, J. S., & Zofka, A. (2017). Comprehensive evaluation of low temperature fracture indices for asphalt mixtures. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions., 86, 629–658. https://doi.org/10.1080/14680629.20l7.1389085

Elseifi, M. A., Mohammad, L. N., Ying, H., & Cooper, S. (2012). Modeling and evaluation of the cracking resistance of asphalt mixtures using the semi-circular bending test at intermediate temperatures. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions., 81, 277–298.

Li, X., & Marasteanu, M. O. (2005). Cohesive modeling of fracture in asphalt mixtures at low temperatures. International Journal of Fracture, 136, 285–308. https://doi.org/10.1007/s10704-005-6035-8

Nemati, R., Haslett, K., Dave, E. V., & Sias, J. E. (2019). Development of a rate-dependent cumulative work and instantaneous power-based asphalt cracking performance index. Road Materials and Pavement Design, 20, S315–S331. https://doi.org/10.1080/14680629.2019.1586753

M.R.M. Aliha, H.R.F. Amirdehi, Fracture toughness prediction using Weibull statistical method for asphalt mixtures containing different air void contents, (2016) 1–14. https://doi.org/10.1111/ffe.12474.

Pirmohammad, S., Khoramishad, H., & Ayatollahi, M. R. (2015). Effects of asphalt concrete characteristics on cohesive zone model parameters of hot mix asphalt mixtures. Canadian Journal of Civil Engineering, 43, 226–232. https://doi.org/10.1139/cjce-2014-0504

Saha, G., & Biligiri, K. P. (2015). Fracture damage evaluation of asphalt mixtures using Semi-Circular Bending test based on fracture energy approach. Engineering Fracture Mechanics, 142, 154–169. https://doi.org/10.1016/j.engfracmech.2015.06.009

Hill, B., Behnia, B., Hakimzadeh, S., Buttlar, W., & Reis, H. (2012). Evaluation of low-temperature cracking performance of warm-mix asphalt mixtures. Transportation Research Record. https://doi.org/10.3141/2294-09

Maupin, G. W., Diefenderfer, S. D., & Gillespie, J. S. (2009). Virginia’s higher specification for reclaimed asphalt pavement: Performance and economic evaluation. Transportation Research Record. https://doi.org/10.3141/2126-17

National Center for Asphalt Technology, LTPP Data Shows RAP Mixes Perform as Well as Virgin Mixes, Asphalt Technology News. 21 (2009)

R.S. McDaniel, H. Soleymani, A. Shah, Use of Reclaimed Asphalt Pavement (RAP ) Under Superpave Specifications : A Regional Pooled Fund Project. Publication FHWA/IN/JTRP-2002/06., Fhwa. (2002) https://doi.org/10.5703/1288284313465

Hamzah, M. O., Kakar, M. R., Quadri, S. A., & Valentin, J. (2014). Quantification of moisture sensitivity of warm mix asphalt using image analysis technique. Journal of Cleaner Production, 68, 200–208. https://doi.org/10.1016/j.jclepro.2013.12.072

Arega, Z. A., Bhasin, A., Li, W., Newcomb, D. E., & Arambula, E. (2014). Characteristics of asphalt binders foamed in the laboratory to produce warm mix asphalt. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000981

You, L., You, Z., Yang, X., Ge, D., & Lv, S. (2018). Laboratory testing of rheological behavior of water-foamed bitumen. Journal of Materials in Civil Engineering, 30, 4–10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002362

Yin, F., Arámbula-Mercado, E., & Newcomb, D. (2016). Mix design procedure for foamed asphalt mixtures. Road Mater. Pavement Des., 17, 946–957. https://doi.org/10.1080/14680629.2015.1132633

Kavussi, A., & Hashemian, L. (2011). Properties of wma-foam mixes based on major mechanical tests. Journal of Civil Engineering and Management, 17, 207–216. https://doi.org/10.3846/13923730.2011.576825

A. Kavussi, L. Hashemian, International Journal of Pavement Engineering Laboratory evaluation of moisture damage and rutting potential of WMA foam mixes, (2012) 37–41.

Wu, S., & Li, X. (2017). Evaluation of effect of curing time on mixture performance of Advera warm mix asphalt. Construction and Building Materials, 145, 62–67. https://doi.org/10.1016/j.conbuildmat.2017.03.240

Kim, Y., & Lee, H. D. (2006). Development of mix design procedure for cold in-place recycling with foamed asphalt. Journal of Materials in Civil Engineering, 18, 116–124. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:1(116)

AASHTO T283–14, Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage, American Association of State Highway and Transportation Officials Washington, DC. 14 (2014) 1–8. https://global.ihs.com/doc_detail.cfm?document_name=AASHTO T 283&item_s_key=00489198.

D. 7369, Standard Test Method for Determining the Resilient Modulus of Bituminous Mixtures by Indirect Tension Test, Transportation Research Record Journal of the Transportation Research Board. 32 (2012) 48–55. http://dx.doi.org/10.1016/j.conbuildmat.2011.12.013%0Ahttp://trid.trb.org/view.aspx?id=1214989%0Ahttp://ieeexplore.ieee.org/document/6728529/%0Ahttp://dx.doi.org/10.1016/j.conbuildmat.2008.12.001%0Ahttp://ascelibrary.org/doi/10.1061/%28ASCE%29MT.1943-5533.

(AASHTO), Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA), American Association of State Highway and Transportation Officials T 324–11 (2013).

Hamzah, M. O., Gungat, L., & Golchin, B. (2017). Estimation of optimum binder content of recycled asphalt incorporating a wax warm additive using response surface method. International Journal of Pavement Engineering, 18, 682–692. https://doi.org/10.1080/10298436.2015.1121779

Hamzah, M. O., Golchin, B., & Tye, C. T. (2013). Determination of the optimum binder content of warm mix asphalt incorporating Rediset using response surface method. Construction and Building Materials, 47, 1328–1336. https://doi.org/10.1016/j.conbuildmat.2013.06.023

Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965–977. https://doi.org/10.1016/j.talanta.2008.05.019

Kavussi, A., Qorbaninik, M., & Hassani, A. (2019). The influence of moisture content and compaction level on LWD modulus of unbound granular base layers. Transportation Geotechnics. https://doi.org/10.1016/j.trgeo.2019.100252

Kavussi, A., Qorbani, M., Khodaii, A., & Haghshenas, H. F. (2014). Moisture susceptibility of warm mix asphalt: A statistical analysis of the laboratory testing results. Construction and Building Materials, 52, 511–517. https://doi.org/10.1016/j.conbuildmat.2013.10.073

ASTM D2172, Standard Test Methods for Quantitative Extraction of Asphalt Binder from Asphalt Mixtures, American Society for Testing and Materials (2017). https://doi.org/10.1520/D2172.

D5444 ASTM. (2015). Standard Test Method for Mechanical Size Analysis of Extracted Aggregate 1. Am. Soc. Test. Mater. ASTM., 14, 98–100.

Kavussi, A., & Hashemian, L. (2012). Laboratory evaluation of moisture damage and rutting potential of WMA foam mixes. International Journal of Pavement Engineering, 13, 415–423. https://doi.org/10.1080/10298436.2011.597859

Shu, X., Huang, B., Shrum, E. D., & Jia, X. (2012). Laboratory evaluation of moisture susceptibility of foamed warm mix asphalt containing high percentages of RAP. Construction and Building Materials, 35, 125–130. https://doi.org/10.1016/j.conbuildmat.2012.02.095

X. Li, M.O. Marasteanu, Using Semi Circular Bending Test to Evaluate Low Temperature Fracture Resistance for Asphalt Concrete, (2010) 867–876. https://doi.org/10.1007/s11340-009-9303-0.

Mirsayar, M. M. (2017). On the low temperature mixed mode fracture analysis of asphalt binder—Theories and experiments. Engineering Fracture Mechanics, 186, 181–194. https://doi.org/10.1016/j.engfracmech.2017.10.010

Bradley, W., Cantwell, W. J., & Kausch, H. H. (1997). Viscoelastic creep crack growth: A review of fracture mechanical analyses. Mechanics of Time-Dependent Materials, 1, 241–268. https://doi.org/10.1023/A:1009766516429

Kavussi, A., & Motevalizadeh, S. M. (2020). Fracture and mechanical properties of water-based foam warm mix asphalt containing reclaimed asphalt pavement. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2020.121332

Yang, S., & Braham, A. (2018). R-curves characterisation analysis for asphalt concrete. International Journal of Pavement Engineering, 19, 99–108. https://doi.org/10.1080/10298436.2016.1172467

De Castro, P. M. S. T. (1984). R-curve behaviour of a structural steel. Engineering Fracture Mechanics, 19, 341–357. https://doi.org/10.1016/0013-7944(84)90028-6

Braham, A., & Mudford, C. (2013). Development of fracture resistance curves for asphalt concrete. Journal of Materials in Civil Engineering, 25, 1631–1637. https://doi.org/10.1061/(asce)mt.1943-5533.0000724

Gilmour, S. G. (2006). Response surface designs for experiments in bioprocessing. Biometrics, 62, 323–331. https://doi.org/10.1111/j.1541-0420.2005.00444.x

Amirdehi, H. R. F., Aliha, M. R. M., Moniri, A., & Torabi, A. R. (2019). Using the generalized maximum tangential stress criterion to predict mode II fracture of hot mix asphalt in terms of mode I results—A statistical analysis. Construction and Building Materials, 213, 483–491. https://doi.org/10.1016/j.conbuildmat.2019.04.067

Wallin, K. (1984). The scatter in KIC-results. Engineering Fracture Mechanics, 19, 1085–1093. https://doi.org/10.1016/0013-7944(84)90153-X

Bala, N., Napiah, M., & Kamaruddin, I. (2018). Nanosilica composite asphalt mixtures performance-based design and optimisation using response surface methodology. International Journal of Pavement Engineering, 8436, 1–12. https://doi.org/10.1080/10298436.2018.1435881